Preview

Journal of Instrument Engineering

Advanced search

Design of an underactuated jumping robot with flexible joints

https://doi.org/10.17586/0021-3454-2022-65-3-174-184

Abstract

Results of a study on the design and manufacture of a prototype of an energy-efficient jumping robot with flexible joints using the principles of morphological calculation are presented. Flexible elements allow robots adaptation to the environment during contact interaction, redirecting the interaction energy from the plastic deformation of solids to the elastic deformation of elastic bodies, which contributes to energy recovery in the system. Unlike traditional lower and higher kinematic pairs, flexible joints provide movement of links only in a limited range within the elastic deformation zone. The problem of designing elastic polymer cross joints is solved by the example of a flat leg mechanism of an incomplete jumping robot of closed kinematics, driven by a single servo motor with elastic elements connected in series. When synthesizing such a robot, it is necessary to optimize not only the kinematic parameters of the lever mechanism, but also the topology and elastic-static parameters of the elastic joints themselves.

About the Authors

K. V. Nasonov
ITMO University
Russian Federation

Kirill V. Nasonov — Graduate Student; ITMO University, Faculty of Control Systems and Robotics, International Laboratory of Biomechatronics and Energy-Efficient Robotics; Engineer.

St. Petersburg



I. I. Borisov
ITMO University
Russian Federation

Ivan I. Borisov — PhD; ITMO University, Faculty of Control Systems and Robotics, International Laboratory of Biomechatronics and Energy-Efficient Robotics; Researcher.

St. Petersburg



References

1. Seok S. et al. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 1970–1975.

2. Hauser S., Dujany M., Arreguit J., Ijspeert A., & Iida F. EEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, 2021.

3. Ye K. and Karydis K. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, 2021.

4. Fankhauser P., Hutter M. Research Features, 2018, no. 126, pp. 54–57.

5. Bledt G. et al. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 2245–2252.

6. Park H.W., Wensing P.M., Kim S. International Journal of Robotics Research, 2017, no. 2(36), pp. 167–192.

7. Zhong Y. et al. International Journal of Advanced Robotic Systems, 2019, no. 3(16), pp. 1729881419844148.

8. Borisova O., Borisov I., Kolyubin S., Stramigioli S. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, 2021.

9. Folkertsma G.A. Energy-based and biomimetic robotics, 2017.

10. Seok S. et al. IEEE/ASME transactions on mechatronics, 2014, no. 3(20), pp. 1117–1129.

11. Folkertsma G.A., Kim S., Stramigioli S. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2012, pp. 2210–2215.

12. Hurst J.W., Chestnutt J.E., Rizzi A.A. IEEE International Conference on Robotics and Automation, Proceedings. ICRA'04, 2004, vol. 5, pp. 4662–4667.

13. Vu H.Q. et al. 2013 16th International Conference on Advanced Robotics (ICAR), IEEE, 2013, pp. 1–7.

14. Radhakrishnan V. Proceedings of the National Academy of Sciences, 1998, no. 10(95), pp. 5448–5455.

15. Haberland M. et al. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 3957–3962.

16. Thomaszewski B. et al. ACM Transactions on Graphics (TOG), 2014, no. 4(33), pp. 1–9.

17. Pratt G.A., Williamson M.M. Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots, IEEE, 1995, vol. 1, pp. 399–406.

18. Pappalardo A. et al. Biomedical Signal Processing and Control, 2016, vol. 29, pp. 31–43.

19. Townsend W., Salisbury J. Proceedings 1987 IEEE International Conference on Robotics and Automation, IEEE, 1987, vol. 4, pp. 883–889.

20. Lakatos D., Albu-Schäffer A. IFAC Proceedings Volumes, 2014, no. 3(47), pp. 6392–6399.

21. Howell L.L. 21st century kinematics, Springer, London, 2013, pp. 189–216.

22. Ashby M.F., Jones D.R.H. Engineering materials 1: an introduction to properties, applications and design, Elsevier, 2012, vol. 1.

23. Chen G.M., Jia J.Y., Li Z.W. IEEE International Conference on Automation Science and Engineering, 2005, pp. 249–253.

24. Lobontiu N. Compliant mechanisms: design of flexure hinges, CRC press, 2002.

25. Naves M. et al. Precision engineering, 2020, vol. 63, pp. 105–114.

26. Naves M., Aarts R., Brouwer D.M. Mikroniek, 2017, no. 3(57), pp. 5–9.

27. Boers A.S.B. et al. 33rd ASPE Annual Meeting 2018, 2018.

28. SPACAR Wiki, 2021, http://www.spacar.nl/wiki/doku.php?id=start.

29. Fix M.E., Brouwer D.M., Aarts R.G.K.M. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2020, vol. 83914, pp. V002T02A007.

30. ROBOTIS e-Manual AX-12A, https://emanual.robotis.com/docs/en/dxl/ax/ax-12a/.

31. http://kyowa.ru/produktsiya/tenzorezistori.html.


Review

For citations:


Nasonov K.V., Borisov I.I. Design of an underactuated jumping robot with flexible joints. Journal of Instrument Engineering. 2022;65(3):174-184. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-3-174-184

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)