Issues of developing a fiber-optic cuvette meter for the concentration of methane in the air in oil and gas industry
https://doi.org/10.17586/0021-3454-2023-66-4-335-341
Abstract
The article is devoted to the development of a fiber-optic cuvette meter of methane concentration at oil and gas enterprises. The subject of the study is the development of theoretical foundations for optimizing the design of such a meter in which the main operating indicator of the meter reaches an extreme value. The purpose of the work is to investigate the possibility of finding the optimal relationship between the main regime indicators, at which the selected optimization criterion reaches the maximum value. An unconstrained optimization problem is formulated, in which an additional condition is added to the optimization functional using the Lagrange multiplier. A form of functional connection between the main regime indicators has been obtained, in which the goal functional reaches a minimum value. The found relationship between the main indicators is characterized as the worst, which should be avoided in practice.
About the Authors
I. G. ChobanzadeAzerbaijan
Imran G. Chobanzade - Manager
Baku
A. E. Babakhanov
Azerbaijan
Aslan E. Babakhanov - Post-Graduate Student
Baku
References
1. Xian Q., Lv H., Yao Y., Cheng C., Zhou Z. Fabrication and application of 1653.7 nm methane sensor // IEEE Photonics journal. 2022. Vol. 14, N 5. October.
2. Cheng W., Han J., Wu Y. Design of a methane concentration detector based on spectrum absorption // Sensors. Switzerland. 2012. Vol. 12. Р. 12729—12740. DOI:10.3390/s120912729.
3. Xu S., Chen M. Design and modeling of non-linear infrared transducer for measuring methane using cross-correlation method // Meas. J. Intern. Meas. Confed. 2012. Vol. 45. Р. 325—332. DOI:10.1016/j.measurement.2011.11.015.
4. Gao Q., Zhang Y., Yu J., Wu S., Zhang Z., Zheng F. Tunable multi-mode diode laser absorption spectroscopy for methane detection // Sensors Actuators A Phys. 2013. Vol. 199. Р. 106—110. DOI:10.1016/j.sna.2013.05.012.
5. Bekele W., Guinguina A., Zegeye A., Simachew A., Ramin M. Contemporary methods of measuring and estimating methane emission from ruminants // Methane. 2022. Vol. 1. Р. 82—95. https://doi.org/10.3390/methane1020008
6. Lomov V. A. Methods for instrumental assessment of methane emission in reservoirs // IOP. Conf. Series: Earth and environmental science. 2021. Vol. 834. Р. 012032. DOI:10.1088/1755-1315/834/1/012032.
7. Thalasso F., Anthony K. W., Irzak O., Chaleff E., Barker L., Anthony P., Hanke P., Gonzalez-Valencia R. Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes // Hydrol. Earth Syst. Sci. 2020. Vol. 24. Р. 6047—6058. https://doi.org/10.5194/hess-24-6047-2020.
8. Siegenthaler A., Welch B., Pangala S. R., Peacock M., Gauci V. Technical note: Semi-rigid chambers for methane gas flux measurements on tree stems // Biogeosciences. 2016. Vol. 13. Р. 1197—1207 [Электронный ресурс]: <www.biogeosciences.net/13/1197/2016/>.
9. Riddick S. N., Ancona R., Mbua M., Bell C. S., Duggan A., Vaughn T. L., Bennett K., Zimmerle D. J. A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure // Atmos. Meas. Tech. 2022. Vol. 15. Р. 6285—6296. https://doi.org/10.5194/atm-15-6285-2022.
10. Mitchell A. L., Tkacik D. S., Roscioli J. R., Herndon S. C., Yacovitch T. I., Martinez D. M., Vaughn T. L., Williams L. L., Sullivan M. R., Floerchinger C., Omara M., Subramanian R., Zimmerle D., Marchese A. J., Robinson A. L. Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement results // Environmental Science & Technology. 2015. Vol. 49, N 20. Р. 12602. DOI: 10.1021/acs.est.5b04018.
11. Schoonbaert S. B., Tyner D. R., Johnson M. R. Remote ambient methane monitoring using fiber-optically coupled optical sensors // Applied Phys. B. 2015. Vol. 119. Р. 133—142. DOI:10.1007/s00340-014-6001-0.
12. Roy S., Desikan R., Duttagupta S. P. A novel, compact optical device for estimating the methane emissions in geological environment. November 2016 [Электронный ресурс]: <https://arxiv.org/ftp/arxiv/papers/1611/1611.08797.pdf>.
13. Cao F., Liu D., Lin J., Hu B., Liu D. Absorption measurement of methane gas with boardband light source using fiber sensor system // Front. Optoelectron. China. 2010. Vol. 3, N 4. Р. 394—398.
14. Cubillas A. M., Lopez M. S., Lazaro J. M., Conde O. M., Petrovich M. N., Higuera J. M. L. Detection of methane at 1670-nm band with a hollow-core photonic bandgap fiber // Photonic Crystal Fibers II. 2008. Proc. SPIE. Vol. 6990. DOI:10.1117/12.780587.
15. Wen-Qing W., Lei Z., Wei-Hua Z. Analysis of optical fiber methane gas detection system // Procedia Engineering. 2013. Vol. 52. P. 401—407.
Review
For citations:
Chobanzade I.G., Babakhanov A.E. Issues of developing a fiber-optic cuvette meter for the concentration of methane in the air in oil and gas industry. Journal of Instrument Engineering. 2023;66(4):335-341. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-4-335-341