Preview

Journal of Instrument Engineering

Advanced search

Method for optical molecular generation of localized chiral structures in photoactive liquid crystal films

https://doi.org/10.17586/0021-3454-2023-66-4-306-312

Abstract

A method for creating an optical scheme and the principle of using photoactive samples of chiral nematic liquid crystals for optical molecular generation of localized chiral structures are considered. It is shown that the existence of two different static localized chiral structures with sizes of about 25 and 10 µm is possible, depending on the power of the UV laser beam. The processes of reconfiguration of localized chiral liquid crystal structures into each other and into a completely frustrated state of a chiral nematic liquid crystal film are described. These localized structures can be used as miniaturized tunable optical elements for focusing and structuring transmitted light beams. 

About the Authors

D. D. Darmoroz
ITMO University
Russian Federation

Darina D. Darmoroz - Post-Graduate Student; Faculty of Life Sciences

St. Petersburg



A. O. Piven
ITMO University
Russian Federation

Anastasiia O. Piven - Master Student; Faculty of Life Sciences

St. Petersburg



T. Orlova
ITMO University
Russian Federation

Tatiana Orlova - PhD; Faculty of Life Sciences; Infochemistry Scientific Center Leading Researcher

St. Petersburg



References

1. Hamdi R. et al. J. Appl. Phys., 2011, no. 7(110).

2. Yang B., Brasselet E. J. Opt. (United Kingdom), 2013, no. 4(15), pp. 1–5.

3. Hess A.J. et al. Phys. Rev. X, 2020, no. 3(10), pp. 32–40.

4. Ackerman P.J., Qi Z., Smalyukh I.I. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2012, no. 2(86), pp. 1–14.

5. Ackerman P.J. et al. ACS Nano, 2015, no. 12(9), pp. 12392–12400.

6. Evans J.S. et al. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2013, no. 3(87), pp. 1–14.

7. Sohn H.R.O. et al. Phys. Rev. E. American Physical Society, 2018, no. 5(97).

8. Haas W.E.L., Adams J.E. Appl. Phys. Lett., 1974, no. 5(25), pp. 263–264.

9. Kawachi M., Kogure O., Kato Y. Jpn. J. Appl. Phys., 1974, vol. 13, pp. 1457, DOI:10.1143/jjap.13.1457.

10. Ackerman P.J., Smalyukh I.I. Phys. Rev. X, 2017, no. 1(7), pp. 1–27.

11. Smalyukh I.I. et al. Nat. Mater. Nature Publishing Group, 2010, no. 2(9), pp. 139–145.

12. Loussert C., Brasselet E. Appl. Phys. Lett., 2014, no. 5(104).

13. Loussert C. et al. Advanced Material, 2014, vol. 26, рр. 4242–4246.

14. Orlova T. et al. Nat. Nanotechnol., Springer US, 2018, no. 4(13), pp. 304–308.

15. Kim Y., Tamaoki T. ChemPhotoChem., 2019, vol. 3, рр. 284–303.

16. Dierking I. Textures of Liquid Crystals, John Wiley & Sons, 2003.

17. Papič M. et al. Proceedings of the National Academy of Sciences, 2021, no. 49(118), DOI:10.1073/pnas.2110839118.


Review

For citations:


Darmoroz D.D., Piven A.O., Orlova T. Method for optical molecular generation of localized chiral structures in photoactive liquid crystal films. Journal of Instrument Engineering. 2023;66(4):306-312. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-4-306-312

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)