Method for optical molecular generation of localized chiral structures in photoactive liquid crystal films
https://doi.org/10.17586/0021-3454-2023-66-4-306-312
Abstract
A method for creating an optical scheme and the principle of using photoactive samples of chiral nematic liquid crystals for optical molecular generation of localized chiral structures are considered. It is shown that the existence of two different static localized chiral structures with sizes of about 25 and 10 µm is possible, depending on the power of the UV laser beam. The processes of reconfiguration of localized chiral liquid crystal structures into each other and into a completely frustrated state of a chiral nematic liquid crystal film are described. These localized structures can be used as miniaturized tunable optical elements for focusing and structuring transmitted light beams.
Keywords
About the Authors
D. D. DarmorozRussian Federation
Darina D. Darmoroz - Post-Graduate Student; Faculty of Life Sciences
St. Petersburg
A. O. Piven
Russian Federation
Anastasiia O. Piven - Master Student; Faculty of Life Sciences
St. Petersburg
T. Orlova
Russian Federation
Tatiana Orlova - PhD; Faculty of Life Sciences; Infochemistry Scientific Center Leading Researcher
St. Petersburg
References
1. Hamdi R. et al. J. Appl. Phys., 2011, no. 7(110).
2. Yang B., Brasselet E. J. Opt. (United Kingdom), 2013, no. 4(15), pp. 1–5.
3. Hess A.J. et al. Phys. Rev. X, 2020, no. 3(10), pp. 32–40.
4. Ackerman P.J., Qi Z., Smalyukh I.I. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2012, no. 2(86), pp. 1–14.
5. Ackerman P.J. et al. ACS Nano, 2015, no. 12(9), pp. 12392–12400.
6. Evans J.S. et al. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2013, no. 3(87), pp. 1–14.
7. Sohn H.R.O. et al. Phys. Rev. E. American Physical Society, 2018, no. 5(97).
8. Haas W.E.L., Adams J.E. Appl. Phys. Lett., 1974, no. 5(25), pp. 263–264.
9. Kawachi M., Kogure O., Kato Y. Jpn. J. Appl. Phys., 1974, vol. 13, pp. 1457, DOI:10.1143/jjap.13.1457.
10. Ackerman P.J., Smalyukh I.I. Phys. Rev. X, 2017, no. 1(7), pp. 1–27.
11. Smalyukh I.I. et al. Nat. Mater. Nature Publishing Group, 2010, no. 2(9), pp. 139–145.
12. Loussert C., Brasselet E. Appl. Phys. Lett., 2014, no. 5(104).
13. Loussert C. et al. Advanced Material, 2014, vol. 26, рр. 4242–4246.
14. Orlova T. et al. Nat. Nanotechnol., Springer US, 2018, no. 4(13), pp. 304–308.
15. Kim Y., Tamaoki T. ChemPhotoChem., 2019, vol. 3, рр. 284–303.
16. Dierking I. Textures of Liquid Crystals, John Wiley & Sons, 2003.
17. Papič M. et al. Proceedings of the National Academy of Sciences, 2021, no. 49(118), DOI:10.1073/pnas.2110839118.
Review
For citations:
Darmoroz D.D., Piven A.O., Orlova T. Method for optical molecular generation of localized chiral structures in photoactive liquid crystal films. Journal of Instrument Engineering. 2023;66(4):306-312. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-4-306-312