Preview

Journal of Instrument Engineering

Advanced search

Methods of Compensating for the Influence of Differences in the Reflectivity of Objects to Improve the Accuracy of Constructing Depth Maps Using an Active-pulse Television Measuring System

https://doi.org/10.17586/0021-3454-2024-67-8-697-712

Abstract

Thin-film lithium niobate, due to its unique properties and the possibility of manufacturing high-contrast waveguides based on it, is a promising material for the production of high-speed photonic integrated circuits with a large number of elements per chip. However, the process of designing and modeling elements of such circuits on thin-film lithium niobate is complicated by the presence of anisotropy. For example, on the X-cut of lithium niobate, the influence of anisotropy will manifest itself in a change in the mode propagation constant, as well as in the transfer of power between modes during the propagation of radiation in the plane of the plate. The coupling between fundamental TE and TM modes in curved single-mode waveguides on the X-cut of thin-film lithium niobate is considered. The intermode coupling is analyzed using the coupled-mode theory. The coupling coefficient is calculated using the formulas corresponding to the cases of arbitrary and small anisotropy. It is shown that if only the influence of the crystal anisotropy is considered, then the calculation of the coupling coefficients using the formulas for arbitrary and small anisotropy gives similar results. The volume of the transferred power between the fundamental TE and TM modes is determined by solving the coupled-mode equations taking into account the radius of curvature, the angle of rotation of the waveguide, and the coupling coefficient.

About the Authors

D. N. Moskalev
Perm Scientific-Industrial Instrument Making Company; Perm State University
Russian Federation

Dmitry N. Moskalev –Post-Gradulate Student; Leading Engineer-Researcher; Assistant

Perm



E. D. Voblikov
Perm Scientific-Industrial Instrument Making Company
Russian Federation

Eugene D. Voblikov – MSc; Head of Laboratory

Perm



V. V. Krishtop
Perm Scientific-Industrial Instrument Making Company; Perm State University; Perm National Research Polytechnic University
Russian Federation

Victor V. Krishtop – Dr. Sci., Professor; Chief
Researcher; Department of Nanotechnologies and Microsystem Technique; Professor; Department of General Physics; Professor

Perm



V. A. Maksimenko
Perm National Research Polytechnic University
Russian Federation

Vitaly A. Maksimenko – PhD, Associate Professor; Department of General Physics; Associate Professor

Perm



A. B. Volyntsev
Perm State University
Russian Federation

Anatoly B. Volyntsev – Dr. Sci., Professor; Department of Nanotechnologies and Microsystem Technique; Head of the Department

Perm



References

1. Gilev D.G., Zhuravlev A.A., Moskalev D.N., Chuvyzgalov A.A., and Krishtop V.V. Journal of Optical Technology, 2022, no. 4(89), pp. 229–235.

2. Gorbunov G.G., Eskov D.N., Parpin M.A., Rodygin I.V. Journal of Instrument Engineering, 2021, no. 2(64), pp. 126–136. (in Russ.)

3. Radzievskaya T.A., Lamkin I.A., Tarasov S.A., Ivanov N.N. Journal of Instrument Engineering, 2021, no. 6(64), pp. 469–476. (in Russ.)

4. Zhu D., Shao L., Yu M., Cheng R., Desiatov B., Xin C.J., Hu Y., Holzgrafe J. et al. Advances in Optics and Photonics, 2021, no. 2(13), pp. 242–352, https://doi.org/10.1364/AOP.411024.

5. Wu J., Ma H., Yin P., Ge Y., Zhang Y., Li L., Zhang H., Lin H. Small Science, 2021, no. 4(1), pp. 2000053, DOI: 10.1002/smsc.202000053.

6. Bettotti P. Advances in Optics, 2014, vol. 2014, https://doi.org/10.1155/2014/891395.

7. Thylén L., Wosinski L. Photonics Research, 2014, no. 2(2), pp. 75–81, https://doi.org/10.1364/PRJ.2.000075.

8. Bogdanov S., Shalaginov M.Y., Boltasseva A., Shalaev V.M. Optical Materials Express, 2017, no. 1(7), pp. 111–132, https://doi.org/10.1364/OME.7.000111.

9. Li N., Ho C.P., Zhu S., Fu Y.H., Zhu Y., Lee L.Y.T. Nanophotonics, 2021, no. 9(10), pp. 2347–2387, https://doi.org/10.1515/nanoph-2021-0130.

10. Heck M.J., Bauters J.F., Davenport M.L., Spencer D.T., & Bowers J.E. Laser & Photonics Reviews, 2014, no. 5(8), pp. 686, DOI 10.1002/lpor.201300183.

11. Tran M.A., Huang D., Komljenovic T., Peters J., Malik A., & Bowers J.E. Applied Sciences, 2018, no. 7(8), pp. 1139, DOI:10.3390/app8071139.

12. Arizmendi L. Physica Status Solidi (a), 2004, no. 2(201), pp. 253–283, DOI 10.1002/pssa.200303911.

13. Toney J.E. Lithium niobate photonics, Artech House, 2015.

14. Li Y., Yang Z., Chen H., Liu R., Peng J. et al. Applied Optics, 2023, no. 32(62), pp. 8661–8669, https://doi.org/10.1364/AO.505135.

15. Kuneva M. International Journal of Scientific Research in Science and Technology, 2016, no. 6(2), pp. 40–50.

16. Xie Z., Zhu S. Advanced Photonics, 2022, no. 3(4), pp. 030502–030502, https://doi.org/10.1117/1.AP.4.3.030502.

17. Boes A., Corcoran B., Chang L., Bowers J., Mitchell A. Laser & Photonics Reviews, 2018, no. 4(12), pp. 1700256, DOI: 10.1002/lpor.201700256.

18. Yang H., Gui J.L., & Sohler W. Silicon Photonics and Photonic Integrated Circuits III. SPIE, 2012, vol. 8431, рр. 268–275.

19. Lin J., Bo F., Cheng Y., Xu J. Photonics Research, 2020, no. 12(8), pp. 1910–1936, https://doi.org/10.1364/PRJ.395305.

20. Kozlov A., Moskalev D., Salgaeva U., Bulatova A., Krishtop V., Volyntsev A., Syuy A. Applied Sciences, 2023, no. 4(13), pp. 2097.

21. Pan A., Hu C., Zeng C., Xia J. Optics express, 2019, no. 24(27), pp. 35659–35669, https://doi.org/10.1364/OE.27.035659.

22. Wang J., Chen P., Dai D., & Liu L. IEEE Photonics Journal, 2020, no. 3(12), pp. 1–10, DOI: 10.1109/JPHOT.2020.2995317.

23. Chen Z., Yang J., Wong W.H., Pun E.Y.B., & Wang C. Photonics Research, 2021, no. 12(9), pp. 2319–2324.

24. Kunz K.S., Luebbers R.J. The finite difference time domain method for electromagnetics, CRC press, 1993.

25. Brunetti G., Dell’Olio F., Conteduca D., Armenise M.N., & Ciminelli C. Journal of optics, 2020, no. 3(22), pp. 035802, DOI 10.1088/2040-8986/ab71eb.

26. Selleri S., Vincetti L., Zoboli M. IEEE Journal of quantum electronics, 2000, no. 12(36), pp. 1392–1401, DOI: 10.1109/3.892558.

27. Xu C.L., Huang W.P., Chrostowski J., Chaudhuri S.K. Journal of Lightwave Technology, 1994, no. 11(12), pp. 1926–1931, DOI: 10.1109/50.336056.

28. Kawano K., Kitoh T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equation and the Schrödinger Equation, John Wiley & Sons, 2001.

29. Xiao J., Sun X. Optics Communications, 2010, no. 14(283), pp. 2835–2840, https://doi.org/10.1016/j.optcom.2010.03.057.

30. Fallahkhair A.B., Li K.S., Murphy T.E. Journal of lightwave technology, 2008, no. 11(26), pp. 1423–1431, DOI: 10.1109/JLT.2008.923643.

31. Snyder A.W. et al. Optical waveguide theory, London, Chapman and hall, 1983, 738 р.

32. Pollock C.R., Lipson M. Integrated photonics, Kluwer Academic, Springer, 2003, 376 р.

33. Ushakov N.A., Markvart A.A., Petrov A.V., Liokumovich L.B. Applied photonics, 2023, vol. 6, рр. 78–91, http://doi.org/10.15593/2411-4375/2023.6.6.

34. Qiu Y., Sheng Y. Fiber bragg grating modeling. Center for Optics, Photonics and Laser, Laval University Ste-Foy, Quebec, 2000, 318 р.

35. Garmire E., Hammer J.M., Kogelnik H., Zernike F. Integrated optics, Springer Science & Business Media, 2013, 318 р.

36. Lui W.W., Huang W.P. Journal of lightwave technology, 1998, no. 5(16), pp. 929, DOI: 10.1109/50.669050.

37. Cortes-Herrera L., He X., Cardenas J., Agrawal G.P. Physical Review A, 2021, no. 6(103), pp. 063517, DOI: 10.1103/PhysRevA.103.063517.

38. Čtyroký J. Journal of optical communications, 1993, no. 1(14), pp. 32–38.

39. Moskalev D., Kozlov A., Salgaeva U., Krishtop V., Perminov A.V., Venediktov V. Photonics, MDPI, 2023, no. 11(10), pp. 1260, https://doi.org/10.3390/photonics10111260.

40. Moskalev D.N. Applied Photonics, 2023, no. 8(10), pp. 17–28. (in Russ.)

41. Zhu Z., Brown T.G. Optics express, 2002, no. 17(10), pp. 853–864, DOI: 10.1364/OE.10.000853.

42. Moskalev D., Kozlov A., Salgaeva U., Krishtop V., Volyntsev A. Applied Sciences, 2023, no. 11(13), pp. 6374, https://doi.org/10.3390/app13116374.

43. Huang W.P. JOSA A, 1994, no. 3(11), pp. 963–983, https://doi.org/10.1364/JOSAA.11.000963


Review

For citations:


Moskalev D.N., Voblikov E.D., Krishtop V.V., Maksimenko V.A., Volyntsev A.B. Methods of Compensating for the Influence of Differences in the Reflectivity of Objects to Improve the Accuracy of Constructing Depth Maps Using an Active-pulse Television Measuring System. Journal of Instrument Engineering. 2024;67(8):697-712. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-8-697-712

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)