Experimental Determination of an Object Displacement Magnitude in the Installation Plane Using the Holographic Interferometry Method
https://doi.org/10.17586/0021-3454-2024-67-3-268-275
Abstract
The features of the functioning of an experimental setup based on application of two-frequency laser radiation using the method of two exposures of holographic interferometry are studied. The installation is intended to determine the amount of movement of an object along the OX axis in the plane of its installation. The holographic interferometry method ensures long-term storage of information on photo carriers, allows for maximum contrast of the interference pattern and high-quality reconstruction of wave fronts. The appearance, optical design and technical characteristics of the experimental setup are presented. Expressions are obtained to determine an object displacement magnitude and measurement errors for each displacement. Images are shown confirming the existence of an interference field for each displacement.
About the Authors
E. Е. MaiorovRussian Federation
Evgeny Е. Maiorov — PhD, Associate Professor,
St. Petersburg.
V. V. Kurlov
Russian Federation
Victor V. Kurlov — PhD, Associate Professor,
St. Petersburg.
Yu. M. Borodyansky
Russian Federation
Yuriy M. Borodyansky — PhD, Associate Professor,
St. Petersburg.
A. V. Dagaev
Russian Federation
Alexander V. Dagaev — PhD, Associate Professor,
Ivangorod.
I. S. Tayurskaya
Russian Federation
Irina S. Tayurskaya — PhD, Associate Professor,
St. Petersburg.
References
1. Ostrovsky Yu.I., Butusov M.M., Ostrovskaya G.V. Golograficheskaya interferometriya (Holographic Interferometry), Moscow, 1977, 340 р. (in Russ.)
2. Ostrovsky Yu.I., Shchepinov V.P., Yakovlev V.V. Golograficheskiye interferentsionnyye metody izmereniya deformatsiy (Holographic Interference Methods for Strain Measurement), Moscow, 1988, 248 р. (in Russ.)
3. Kolomiytsev Yu.V. Interferometry (Interferometers), Leningrad, 1976, 296р. (in Russ.)
4. Kotov I.R., Mayorova O.V., Prokopenko V.T. Journal of Instrument Engineering, 2010, no. 4(53), pp. 32–34. (in Russ.)
5. Vest Ch.M. Holographic Interferometry, NY, Wiley, 1979.
6. Malacara D., ed., Optical Shop Testing, Wiley-Interscience, A John Wiley & Sons, Inc., 2007.
7. Maiorov E.E., Borodyansky Y.M., Guliyev R.B., Dagaev A.V., Kurlov V.V., Tayurskaya I.S. Nauchnoe Priborostroenie, 2023, no. 1(33), pp. 43–53. (in Russ.)
8. Maiorov E.E., Arefiev A.V., Borodyansky Yu.M., Guliyev R.B., Dagaev A.V., Pushkina V.P. Journal of Instrument Engineering, 2023, no. 4(66), pp. 313–319, DOI: 10.17586/0021-3454-2023-66-4-313-319. (in Russ.)
9. Maiorov E.E. Modelirovaniye i situatsionnoye upravleniye kachestvom slozhnykh sistem (Modeling and Situational Quality Management of Complex Systems), Collection of Reports of the Fourth All-Russian Scientific Conference, St. Petersburg, April 18–22, 2023, рр. 56–60. (in Russ.)
10. Maiorov E.E. Modelirovaniye i situatsionnoye upravleniye kachestvom slozhnykh sistem (Modeling and Situational Quality Management of Complex Systems), Collection of Reports of the Fourth All-Russian Scientific Conference, St. Petersburg, April 18–22, 2023, рр. 61–64. (in Russ.)
11. Maiorov E.E. Modelirovaniye i situatsionnoye upravleniye kachestvom slozhnykh sistem (Modeling and Situational Quality Management of Complex Systems), Collection of Reports of the Fourth All-Russian Scientific Conference, St. Petersburg, April 18–22, 2023, рр. 65–68. (in Russ.)
12. Maiorov E.E., Kostin G.A., Chernyak T.A. Nauchnoe Priborostroenie, 2023, no. 2(33), pp. 75–83. (in Russ.)
13. Maiorov E.E., Kostin G.A., Chernyak T.A. Journal of Instrument Engineering, 2023, no. 5(66), pp. 430–436, DOI: 10.17586/0021-3454-2023-66-5-430-436. (in Russ.)
14. Kostin G.A., Chernyak T.A., Maiorov E.E. News of the Tula state university. Technical sciences, 2023, no. 4, pp. 109–112, DOI: 10.24412/2071-6168-2023-4-109-112. (in Russ.)
15. Maiorov E.E., Pushkina V.P., Arefiev A.V., Kurlov V.V., Guliyev R.B.O., Tayurskaya I.S. News of the Tula state university. Technical sciences, 2023, no. 4, pp. 132–137, DOI: 10.24412/2071-6168-2023-4-132-137. (in Russ.)
16. Maiorov E.E., Chernyak T.A., Kostin G.A. Instruments, 2023, no. 5(275), pp. 51–54. (in Russ.)
17. Maiorov E.E., Borodyansky Yu.M., Kurlov V.V., Tayurskaya I.S., Pushkina V.P., Guliev R.B. Journal of Instrument Engineering, 2023, no. 8(66), pp. 688–695, DOI: 10.17586/0021-3454-2023-66-8-688-695. (in Russ.)
18. Maiorov E.E., Arefiev A.V., Kurlov V.V., Pushkina V.P., Borodyansky Yu.M., Tayurskaya I.S. News of the Tula state university. Technical sciences, 2023, no. 7, pp. 585–590, DOI: 10.24412/2071-6168-2023-7-585-586 (in Russ.)
19. Maiorov E.E., Kostin G.A., Chernyak T.A., Baranov N.E. News of the Tula state university. Technical sciences, 2023, no. 7, pp. 577–581, DOI: 10.24412/2071-6168-2023-7-577-578. (in Russ.)
Review
For citations:
Maiorov E.Е., Kurlov V.V., Borodyansky Yu.M., Dagaev A.V., Tayurskaya I.S. Experimental Determination of an Object Displacement Magnitude in the Installation Plane Using the Holographic Interferometry Method. Journal of Instrument Engineering. 2024;67(3):268-275. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-3-268-275