Preview

Journal of Instrument Engineering

Advanced search

Text Recognition of Historical Documents Using Deep Neural Network Technologies

https://doi.org/10.17586/0021-3454-2024-67-9-767-775

Abstract

   The application of deep neural network technologies to the problem of handwriting recognition in pre-reform Russian is considered. The initial data used are scanned JPG images of historical documents from the 19th century, in particular containing various noises and interference, which complicates the work of the recognition algorithm. Text recognition is performed in three stages: noise removal, segmentation (highlighting) of text lines in the image, since the input data for the deep neural network are precisely the lines, and then recognition of the text of the highlighted lines using the pre-trained Tesseract OCR model, which performs electronic translation of images of handwritten or printed text into text data. The model used is a convolutional recurrent neural network; the model is a combination of a convolutional neural network for extracting local features from an image and a recurrent neural network represented by two layers of bidirectional LSTM networks for processing the sequence. Using this model allows for reliable recognition of handwritten text.

About the Authors

A. M. Unterberg
Siberian Federal University
Russian Federation

Aleksander M. Unterberg, Student

Institute of Space and Information Technologies; Department of Artificial Intelligence Systems

Krasnoyarsk



A. V. Pyataeva
Siberian Federal University
Russian Federation

Anna V. Pyataeva, PhD, Associate Professor, Head of the laboratory

Institute of Space and Information Technologies; Department of Artificial Intelligence Systems; scientific and educational laboratory of artificial intelligence systems

Krasnoyarsk



S. S. Zamyslova
Siberian Federal University
Russian Federation

Svetlana S. Zamyslova, Student

Institute of Space and Information Technologies; Department of Artificial Intelligence Systems

Krasnoyarsk



E. D. Rukosueva
Siberian Federal University
Russian Federation

Ekaterina D. Rukosueva, Student

Institute of Space and Information Technologies; Department of Artificial Intelligence Systems

Krasnoyarsk



K. V. Bogdanov
Siberian Federal University
Russian Federation

Konstantin V. Bogdanov, PhD, Associate Professor

Institute of Space and Information Technologies; Department of Software Engineering

Krasnoyarsk



References

1. Carbonell M., Fornés A., Villegas M., Lladós J. Pattern Recognition Letters, 2020, vol. 136, рр. 219–227, DOI: 10.1016/j.patrec.2020.05.001.

2. Mestha P., Asif S., Mayekar M. Lecture Notes in Networks and Systems, 2022, рр. 567–580, DOI: 10.1007/978-3-030-84760-9_48.

3. Souibgui M.A., Fornes A., Kessentini Y., Megyesi B. Pattern Recognition Letters, 2022, vol. 160, рр. 43–49, DOI: 10.1016/j.patrec.2022.06.003.

4. Kang L., Riba P., Rusinol M., Fornes A., Villegas M. Pattern Recognition, 2022, vol. 129, art. no. 108766, DOI: 10.1016/j.patcog.2022.108766.

5. Gonwirat S., Surinta O. Engineering and Applied Science Research, 2022, no. 4(49), pp. рр. 505–520, DOI: 10.14456/easr.2022.50.

6. Aradillas J., Murillo-Fuentes J., Olmos P. IEEE Access, 2021, vol. 9, рр. 76674–76688, DOI: 10.1109/ACCESS.2021.3082689.

7. Im C., Kim Y., Mandl T. Multimedia Tools and Applications, 2022, vol. 81, рр. 5867–5888, DOI: 10.1007/s11042-021-11754-7.

8. Jiju A., Tuscano Sh., Badgujar Ch. International Journal of Engineering and Management Research, 2021, no. 2(11), pp. 83–86, DOI:10.31033/ijemr.11.2.11.

9. Lombardi F., Marinai S. Journal of Imaging, 2020, no. 6(10), pp. 110, DOI: 10.3390/jimaging6100110.

10. Sporici D., Cusnir E., Boiangiu C. Symmetry, 2020, no. 5(12), pp. 715, DOI: 10.3390/sym12050715.

11. Pyataeva A.V., Genza S.A. CEUR Workshop Proceedings, 2019, vol. 2534, рр. 248–252.


Review

For citations:


Unterberg A.M., Pyataeva A.V., Zamyslova S.S., Rukosueva E.D., Bogdanov K.V. Text Recognition of Historical Documents Using Deep Neural Network Technologies. Journal of Instrument Engineering. 2024;67(9):767-775. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-9-767-775

Views: 89


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)