Multi-agent System Control Algorithms for Coordinated Route Movement
https://doi.org/10.17586/0021-3454-2025-68-12-1046-1055
Abstract
This paper proposes new methods for multi-agent formation control during coordinated following of straight and circular paths. The dynamics of the agents are described using a nonholonomic model, which is a universal approach suitable for a wide range of robotic platforms. The task of the agents is to follow given straight and circular paths while simultaneously maintaining a desired geometric formation. A formation control algorithm based on the leader–follower strategy is developed, ensuring coordinated agent motion and preservation of the specified formation. In addition, a fully distributed control algorithm is proposed, which does not require a leader and relies solely on local information from neighboring agents. For each algorithm, the stability of the desired formation is analyzed. The effectiveness of the proposed algorithms is validated through numerical simulations in MatLab.
About the Author
Q. P. PhamRussian Federation
Quoc Phong Pham — Post-Graduate student; Department of Automatic control systems
Moscow
References
1. Okubo A. Advances in biophysics, 1986, no. 1(22), pp. 94.
2. Dong W., Farrell J.A. IEEE Transactions on Automatic Control, 2008, no. 6(53), pp. 1434–1448.
3. Liang K.-Y., Van de Hoef S., Terelius H., Turri V., Besselink B., Martensson J., Johansson K.H. European Journal of Control, 2016, vol. 30, pp. 2–14.
4. Schenato L., Gamba G. Proceeding of 46th IEEE Conference on Decision and Control, 2007, pp. 2289–2294.
5. Mansouri S.S., Nikolakopoulos G., Gustafsson T. Workshop on Research, Education and Development of Unmanned Aerial Systems, Cancun, Mexico, 2015, pp. 152–161.
6. Alrifaee B., Mamaghani M.G., Abel D. 2014 IEEE International Symposium on Intelligent Control (ISIC), Juan Les Pins, France, 2014, pp. 1583–1588.
7. Muslimov T.Z., Munasypov R.A. Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, no. 1(21), pp. 43–50. (in Russ.)
8. Kanjanawanishkul K., Zell A. 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 2008, pp. 3120–3125.
9. Scherer J., Yahyanejad S., Hayat S., Yanmaz E., Andre T., Khan A., Vukadinovic V., Bettstetter C., Hellwagner H., Rinner B. Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, Florence, Italy, May 18, 2015, рр. 33–38.
10. Filimonov A.B., Filimonov N.B., Nguyen T.K., Pham Q.P. Mekhatronika, Avtomatizatsiya, Upravlenie, 2022, no. 5(23), pp. 227–235, DOI: 10.17587/mau.24.374-381. (in Russ.)
11. Liu H.H.T., Zhu B. Formation control of multiple autonomous vehicle systems, Hoboken, NJ, Wiley, 2018, 253 p.
12. Merino L., Martínez-de Dios J.R., Ollero A. Handbook of Unmanned Aerial Vehicles, Springer Netherlands, 2015, рр. 2693–2722.
13. Kurochkin S.Yu., Tachkov A.A. Mekhatronika, Avtomatizatsiya, Upravlenie, 2021, no. 6(22), pp. 304–312, DOI: 10.17587/mau.22.304-312. (in Russ.)
14. Oh K.-K., Park M.-Ch., and Ahn H.-S. Automatica, 2015, vol. 53, pp. 424–440.
15. Do Y.T., Hua H.T., Nguen M.T., Nguyen C.V., Nguyen H.T.T., Nguyen H.T., Nguyen N.T. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 2021, no. 8(27), pp. e3, DOI: 10.4108/eai.10-6-2021.170230.
16. Desai J.P., Ostrowski J., Kurmar V. Proceedings of the 1998 IEEE Intl. Conference on Robotics and Automation, 1998, pp. 2864–2869.
17. Xu T., Liu J., Zhang Z., Chen G., Cui D., Li H. IEEE Access, 2023, vol. 11, pp. 128762–128773.
18. Pham Q.P. Journal of Advanced Research in Technical Science, 2025, no. 47, pp. 64–70, https://doi.org/10.26160/2474-5901-2025-47-64-70. (in Russ.)
19. Hung N.T., Pascoal A.M. IFAC-PapersOnLine, 2018, no. 20(51), pp. 562–567.
20. Mesbahi M., Egerstedt M. Graph Theoretic Methods in Multiagent Networks. STU-Student edition, Princeton University Press, 2010, 424 p.
21. Beard R.W., McLain T.W. Small Unmanned Aerial Vehicles: Theory and Practice, Princeton University Press, 2012, 300 р.
Review
For citations:
Pham Q.P. Multi-agent System Control Algorithms for Coordinated Route Movement. Journal of Instrument Engineering. 2025;68(12):1046-1055. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-12-1046-1055
JATS XML






















