Preview

Journal of Instrument Engineering

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Software package for 17-segment localization of myocardial fibrosis of the left ventricle of the heart

https://doi.org/10.17586/0021-3454-2025-68-11-996-1005

Abstract

Localized quantitative assessment of myocardial fibrosis is used to predict outcomes of cardiovascular diseases, select therapeutic and surgical strategies. In widespread practice, localized quantitative assessment of myocardial fibrosis is complicated by the need for manual or semiautomatic image preprocessing. A software package based on the use of deep learning technologies for analyzing MR images of the heart with late gadolinium enhancement and quantifying myocardial fibrosis is proposed. The results of statistical analysis of the prepared dataset indicate the presence of stable correlations of localized relative fibrosis volume with clinical data on ejection fractions and the degree of heart failure in patients. A pronounced negative correlation can be noted between the degree of heart failure and the left ventricular ejection fraction (p <0.001). There is also a small correlation between the LV ejection fraction and the relative volume of fibrosis for two basins - RCA and LCx (p < 0.01). The coefficient of structural similarity with the reference marking of the myocardium is 0.87 / 0.87 / 0.88 according to the DSC / Precision / Recall metrics for the automatic Cascade-U-Net-based solution. The accuracy of classification of the left ventricle level on the slice by the trained U-NetLoc model is 83% / 86% / 95% in the classification of basal / medial / apical myocardial slices. The quality of myocardial localization by the trained U-NetBull model ensures the Sorensen–Dice similarity coefficient 0,827/0,778/0,734 in individual segments of the basal / medial / apical level of the left ventricle level. The developed software package for localized quantitative assessment of myocardial fibrosis can be used as an auxiliary tool by cardiologists and radiologists to increase the diagnostic accuracy.

About the Authors

A. G. Levchuk
ITMO University
Russian Federation

Anatoliy G. Levchuk — Post-Graduate Student; Faculty of Physics

St. Petersburg 



W. Al-Haidri
ITMO University
Russian Federation

Walid Al-Haidri — PhD; Faculty of Physics; Researcher

St. Petersburg 



K. M. Belousova
ITMO University
Russian Federation

Kseniya M. Belousova — Faculty of Physics; Engineer

St. Petersburg 



V. A. Fokin
Almazov National Medical Research Center
Russian Federation

Vladimir A. Fokin — Dr. Sci., Professor

St. Petersburg 



A. V. Ryzhkov
Almazov National Medical Research Center
Russian Federation

Anton V. Ryzhkov — Department of Magnetic Resonance Imaging; Head of the Department

St. Petersburg 



D. Bendahan
Aix-Marseille Université
France

David Bendahan — Biological and Medical Magnetic Resonance Center; Research Director

Marseille 



E. A. Brui
ITMO University
Russian Federation

Ekaterina A. Brui — PhD, Senior Researcher; Faculty of Physics

St. Petersburg 



References

1. Fernandez-Armenta J., Berruezo A., Mont L., Sitges M., Andreu D., Silva E., Ortiz-Perez J.T., Tolosana J.M., De Caralt T.M., Perea R.J., Calvo N., Trucco E., Borras R., Matas M., Brugada J. Europace, 2012, no. 11(14), pp. 1578– 1586, DOI: 10.1093/europace/eus104.

2. Guehl N.J., Normandin M.D., Wooten D.W., Rozen G., Ruskin J.N., Shoup T.M., Woo J., Ptaszek L.M., Fakhri G.E., Alpert N.M. Medical Physics, 2017, no. 9(44), pp. 4643–4651, DOI: 10.1002/mp.12398.

3. Cerqueira M.D., Weissman N.J., Dilsizian V., Jacobs A.K., Kaul S., Laskey W.K., Pennell D.J., Rumberger J.A., Ryan T.J., Verani M.S. Journal of Cardiovascular Magnetic Resonance, 2002, no. 2(4), pp. 203–210, DOI: 10.1081/JCMR-120003946.

4. Pereztol-Valdes O., Candell-Riera J., Santana-Boado C., Angel J., Aguade-Bruix S., Castell-Conesa J., Garcia E.V., Soler-Soler J. European Heart Journal, 2005, vol. 26, рр. 2637–2643, DOI:10.1093/eurheartj/ehi496.

5. Klein J.L., Garcia E.V., DePuey E.G., Campbell J., Taylor A.T., Pettigrew R.I., D’Amato P., Folks R., Alazraki N. J. Nucl. Med., 1990, vol. 31, рр. 1240–1246.

6. d’Entremont M.-A., Fortin G., Huynh T., Croteau É., Farand P., Lemaire-Paquette S., Brochu M.-C., Do D.H., Lepage S., Mampuya W.M., Couture É.L., Nguyen M., Essadiqi B. Cardiovasc Ultrasound, 2021, no. 1(19), pp. 27, DOI: 10.1186/s12947-021-00259-w.

7. Saeed M., Van T.A., Krug R., Hetts S.W., Wilson M.W. Cardiovascular Diagnosis and Therapy, 2015, no. 5(4), pp. 290–310, http://dx.doi.org/10.3978/j.issn.2223-3652.2015.06.07.

8. Schulz-Menger J., Bluemke D.A., Bremerich J., Flamm S.D., Fogel M.A., Friedrich M.G., Kim R.J., Von KnobelsdorffBrenkenhoff F., Kramer C.M., Pennell D.J., Plein S., Nagel E. Journal of Cardiovascular Magnetic Resonance, 2020, no. 1(22), pp. 19, DOI: 10.1186/s12968-020-00610-6.

9. Segment CMR — Medviso, https://medviso.com/cmr/.

10. CMRSegTools — homepage, https://www.creatis.insa-lyon.fr/CMRSegTools/.

11. CASIS — CArdiac Simulation & Imaging Software — Homepage, https://www.casis.fr/.

12. Cardiac MR | Circle Cardiovascular Imaging, https://www.circlecvi.com/cardiac-mr.

13. Medis Suite MR — Cardiac MRI — Medis Medical Imaging, https://medisimaging.com/software-solutions/medissuite-mr/.

14. Ronneberger O., Fischer P., Brox T. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, Springer International Publishing, 2015, vol. 9351, рр. 234–241, DOI: 10.1007/978-3-319-24574-4_28.

15. Kim R.J., Shah D.J., Judd R.M. Journal of Cardiovascular Magnetic Resonance, 2003, no. 3(5), pp. 505–514, DOI: 10.1081/JCMR-120022267.

16. Levchuk A.G., Fokin V.A., Ryzhkov A.V., Baev M.S., Bendahan D., Al-Haidri W., Brui E.A. Biomedical Radioelectronics, 2024, no. 3(27), pp. 13–27, DOI: https://doi.org/10.18127/j15604136202403-02. (in Russ.)

17. Sørensen T. Kongelige Danske Videnskabernes Selskab, 1948, no. 4(5), pp. 1–34.

18. Dice L.R. Ecology, 1945, no. 3(26), pp. 297–302, DOI: 10.2307/1932409.

19. Powers D.M.W. J. of Mach Lear Tech., 2011, no. 1(2), pp. 37–63, DOI: 10.9735/2229-3981.

20. Al-Haidri W., Levchuk A., Zotov N., Belousova K., Ryzhkov A., Fokin V., Lukin M., Bendahan D., Brui E. Biomedical Signal Processing and Control, 2025, vol. 105, р. 107555, DOI: 10.1016/j.bspc.2025.107555.

21. Yong H., Huang J., Hua X., Zhang L. arXiv:2004.01461, arXiv, 2020, DOI: 10.48550/arXiv.2004.01461.

22. Malov A.A., Polatova M.V., Bashirov R.A. Practical medicine, 2021, no. 4(19), pp. 50–55, DOI: 10.32000/2072-1757-2021-4-50-55. (in Russ.)


Review

For citations:


Levchuk A.G., Al-Haidri W., Belousova K.M., Fokin V.A., Ryzhkov A.V., Bendahan D., Brui E.A. Software package for 17-segment localization of myocardial fibrosis of the left ventricle of the heart. Journal of Instrument Engineering. 2025;68(11):996-1005. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-11-996-1005

Views: 17


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)