Sets of Quinary Kasami-like Sequences for Digital Information Transmission Systems
https://doi.org/10.17586/0021-3454-2024-67-8-637-646
Abstract
For quinary basic M-sequences (MS) with the period N = 5S – 1 (S = 4, 6), sets of vectors of decimation indices IS,MK = (d1, d2, ..., dn ) are presented, on the basis of which small sets of Kasami-like sequences (KLS) with the period N < 20 000 are formed in the finite fields GF(5S). It is shown that for values of S = 4, 6 the periodic cross-correlation function (PCCF) of a small set of KLS is four-level with a maximum value of the PCCF |Rmax | S,MK = (5S/2 + 1). The values of the volumes of small sets of quinary KLS are given.
About the Authors
V. G. StarodubtsevRussian Federation
Victor G. Starodubtsev – PhD, Associate Professor; Department of Technologies and Automation Tools for Processing and Analysis of Spacecraft Information; Lecturer
St. Petersburg
Y. G. Morozov
Russian Federation
Yan G. Morozov – Department of Technologies and
Automation Tools for Processing and Analysis of Spacecraft Information; Student
St. Petersburg
References
1. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
2. Vishnevskij V.M., Lyahov A.I., Portnoj S.L., Shahnovich I.V. Shirokopolosnye besprovodnye seti peredachi informacii (Broadband Wireless Data Transmission Network), Moscow, 2005, 592 p. (in Russ.)
3. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
4. Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003, 608 p. (in Russ.)
5. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge, Cambridge Univ. Press, 2005.
6. Ipatov V.P. Periodicheskie diskretnye signaly s optimal’nymi korrelyacionnymi svojstvami (Periodic Discrete Signals with Optimum Correlation Properties), Moscow, 1992, 152 p. (In Russ.)
7. Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.
8. Boztaş S., Özbudak F., Tekin E. Cryptogr. Commun., 2018, no. 3(10), pp. 509.
9. Cho Ch.-M., Kim J.-Y., No J.S. IEICE Transactions on Communications, 2015, no. 7(E98), pp. 1268.
10. Starodubtsev V.G. Trudy SPIIRAN (SPIIRAS Proceedings), 2019, no. 4(18), pp. 912. (in Russ.)
11. Choi S.T., Lim T., No J.S., Chung H. IEEE Trans. Inf. Theory, 2012, no. 3(58), pp. 1873.
12. Xia Y., Chen S. IEEE Trans. Inf. Theory, 2012, no. 9(58), pp. 6037.
13. Lee W., Kim J.-Y., No J.S. IEICE Transactions on Communications, 2014, no. 1(E97-B), pp. 2311.
14. Song M.K., Song H.Y. IEEE Trans. Inf. Theory, 2018, no. 4(64), pp. 2901.
15. Starodubtsev V.G. Journal of Communications Technology and Electronics, 2023, no. 2(68), pp. 128. (in Russ.)
16. Helleseth T., Kumar P.V., Martinsen H. Designs, Codes and Cryptography, 2001, no. 2(23), pp. 157.
17. Jang J.W., Kim Y.S., No J.S., Helleseth T. IEEE Trans. Inf. Theory, 2004, no. 8(50), pp. 1839.
18. Starodubtsev V.G., Chetverikov E.A. Journal of Instrument Engineering, 2023, no. 10(66), pp. 807. (in Russ.)
19. Starodubtsev V.G., Tkachenko V.V. Journal of Instrument Engineering, 2024, no. 2(67), pp. 107. (in Russ.)
Review
For citations:
Starodubtsev V.G., Morozov Y.G. Sets of Quinary Kasami-like Sequences for Digital Information Transmission Systems. Journal of Instrument Engineering. 2024;67(8):637-646. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-8-637-646