Setting up PID controllers for a quadcopter system using the 3S Optimizer algorithm
https://doi.org/10.17586/0021-3454-2025-68-11-937-948
Abstract
Quadcopters are one of the most widely used types of unmanned aerial vehicles due to their simple design, high maneuverability, versatility and cost-effectiveness. However, controlling the movement of the quadcopter along a given trajectory is a serious problem due to non-linearities, external disturbances and drive limitations. The proportionalintegral-differential (PID) controller is a convenient control tool when using modern optimization methods. The aim of the work is to increase the efficiency of controlling the movement of a quadcopter along a given trajectory using a PID controller, the coefficients of which are optimized by the 3S Optimizer metaheuristic algorithm. The quadcopter is controlled by generating signals for four engines, which provide the appropriate angular velocities to achieve a given position and orientation in space. The quadcopter’s control scheme is designed according to a hierarchical model that includes three nested control circuits. The design of PID controllers using 3S Optimizer is formulated as an optimization problem with limitations on overshoot, rise time, and transition time. Two types of experiments are conducted: 1) checking the response of the control system to input signals in the form of single jumps; 2) checking the ability of the control system to follow a given trajectory. In both experiments, control systems with settings using the 3S Optimizer algorithm shows the best results by almost all criteria.
About the Authors
X. D. MaiРоссия
Xuan Dung Mai — Post-Graduate Student; Department of Computer Control and Design Systems
Tomsk
I. А. Hodashinsky
Россия
Ilya А. Hodashinsky — Dr. Sci., Professor; Department of Computer Control and Design Systems
Tomsk
References
1. Trinh L.M., Tran N.T., Vo V.A. International Journal of Robotics and Control Systems, 2024, no. 2(4), pp. 814–831, DOI: 10.31763/ijrcs.v4i2.1410.
2. Elkhatem A.S., Engin S.N. Alexandria Engineering Journal, 2022, no. 8(61), pp. 6275–6292, DOI: 110.1016/j.aej.2021.11.057.
3. Cai Z., Zhang S., Jing X. IEEE Access, 2021, vol. 9, рр. 162909–162918, DOI: 10.1109/ACCESS.2021.3134009.
4. Rodríguez–Abreo O., Rodríguez–Reséndiz J., García–Cerezo A., García–Martínez J.R. Heliyon, 2024, vol. 10, рр. e26363, DOI: 10.1016/j.heliyon.2024.e26363.
5. Labbadi M., Boukal Y., Cherkaoui M., Djemai M. Journal of the Franklin Institute, 2021, no. 9(358), pp. 4822–4847, DOI: 10.1016/j.jfranklin.2021.04.032.
6. Eltayeb A., Rahmat M.F., Basri M.A.M., Mohammed Eltoum M.A., Mahmoud M.S. IEEE Access, 2022, vol. 10, рр. 94754–94764, DOI: 10.1109/ACCESS.2022.3203058.
7. Nguyen N.P., Nguyen X.M., Ha L.N.N.T., Huynh T.T., Lam N.T., Hong S.K. IEEE Access, 2021, vol. 9, рр. 40076– 40085, DOI: 10.1109/ACCESS.2021.3064883.
8. Tran V.T., Korikov A.M. Proceedings of TUSUR University, 2022, no. 2(25), pp. 37–44, DOI: 10.21293/1818-0442-2022-25-2-37-44. (in Russ.)
9. Kim S.A., Pyrkin A.A., Borisov O.I. Journal of Instrument Engineering, 2024, no. 5(67), pp. 385–394, DOI: 10.17586/0021-3454-2024-67-5-385-394.
10. Kim S.A., Pyrkin A.A., Borisov O.I. Journal of Instrument Engineering, 2023, no. 10(66), pp. 834–844, DOI: 10.17586/0021-3454-2023-66-10-834-844. (in Russ.)
11. Polat O., Sezgin A. Journal of Engineering Sciences and Design, 2024, no. 1(12), pp. 34–48, DOI: 10.21923/jesd.1223998.
12. Baharuddin A., Basri M.A.M. International Journal of Robotics and Control Systems, 2023, no. 4(3), pp. 728–748, DOI: 10.31763/ijrcs.v3i4.1127.
13. Sahrir N.H., Basri M.A.M. International Journal of Robotics and Control Systems, 2024, no. 2(4), pp. 691–708, DOI: 10.31763/ijrcs.v4i2.1374.
14. Zhang L., Bai L., Liang J., Qin Z., Zhao Y. Computer Systems Science and Engineering, 2024, no. 6(48), pp. 1557– 1579, DOI: 10.32604/csse.2024.054237.
15. Hodashinsky I.A. Automation and Remote Control, 2021, no. 6(82), pp. 935–967, DOI: https://doi.org/10.1134/S0005117921060011.
16. Soyinka O.K., Ikpaya M.N., Luka L. Discover Electronics, 2025, vol. 2, art. nо. 8, DOI: 10.1007/s44291–025–00049–y.
17. Sheta A., Braik M., Maddi D.R., Mahdy A., Aljahdali S., Turabieh H. Applied Sciences, 2021, no. 14(11), pp. 6492, DOI: 0.3390/app11146492.
18. Sahrir N.H., Basri M.A.M. Arabian Journal for Science and Engineering, 2023, no. 2(48), pp. 6492, DOI: 10.1007/s13369-023-08088-x.
19. Wolpert D., Macready W. IEEE Transactions on Evolutionary Computation, 1997, vol. 1, рр. 67–82, DOI: 10.1109/4235.585893.
20. Li Y. Evolutionary Intelligence, 2024, vol. 17, рр. 3535–3552, DOI: 10.1007/s12065-024-00943-6.
21. Mohanraj D., Aruldavid R., Verma R., Sathyasekar K., Barnawi A.B., Chokkalingam B., Mihet-Popa L.L. IEEE Access, 2022, vol. 10, рр. 54833–54869, DOI: 10.1109/ACCESS.2022.3175011.
22. EMAX Multicopter motor MT1806, https://emaxmodel.com/products/emax–multicopter–motor–mt1806.
Review
For citations:
Mai X., Hodashinsky I.А. Setting up PID controllers for a quadcopter system using the 3S Optimizer algorithm. Journal of Instrument Engineering. 2025;68(11):937-948. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-11-937-948
JATS XML






















