Multi-aspect representation of the problem domain for configuring sociotechnical systems
https://doi.org/10.17586/0021-3454-2025-68-10-852-861
Abstract
A methodology for supporting decision-making in configuring sociotechnical systems based on their decomposition is proposed. Decomposition is accomplished using multi-aspect ontologies, which allows both preserving the independence of the modeled aspects of the systems under consideration and ensuring their interoperability. Application of the methodology is illustrated using an applied task of maintenance in semiconductor manufacturing. It is shown that using the proposed methodology together with multi-aspect ontologies significantly increases the level of automation, thereby increasing the speed and reducing the incidence of errors in decision support for this applied task.
About the Author
N. G. ShilovRussian Federation
Nikolay G. Shilov — PhD; Laboratory of Computer-aided Integrated Systems; Senior Researcher
St. Petersburg
References
1. Mizyun V.A. Sistemnyy analiz v upravlenii predpriyatiyem (Systems Analysis in Enterprise Management), Tolyatti, 2007, 252 р.
2. Robinson J. Annals of Mathematics, Second Series, 1951, no. 2(54), pp. 296–301.
3. Maslov S.Yu. Teoriya deduktivnosti sistem i yeye primeneniya (Theory of Deductive Systems and Its Applications), Moscow, 1986, 136 р. (in Russ.)
4. Ackoff R.L. The Art of Problem Solving: Accompanied by Ackoff’s Fables, Wiley, 1991, 240 р.
5. Kusiak A. Journal of Intelligent Manufacturing, 2024, vol. 36, pp. 1–3.
6. Song Z., Kusiak A. International Journal of Production Research, 2009, no. 7(47), pp. 1733–1751.
7. Klir G.J., Elias D. Architecture of Systems Problem Solving, Kluwer Academic, 2003, 364 p.
8. Tsvirkun A.D. Osnovy sinteza struktury slozhnykh sistem (Fundamentals of Synthesis of Complex Systems Structure), Moscow, 1982, 200 р.
9. Mesarovic M.D., Takahara Y. General systems theory: mathematical foundations, Academic press, 1975.
10. Okhtilev M.Yu., Sokolov B.V., Yusupov R.M. Intellektual’nyye tekhnologii monitoringa i upravleniya strukturnoy dinamikoy slozhnykh tekhnicheskikh ob”yektov (Intelligent Technologies for Monitoring and Controlling the Structural Dynamics of Complex Technical Objects), Moscow, 2006, 410 р. (in Russ.)
11. Sheremetov L.B. Journal of Computer and Systems Sciences International, 2009, no. 5(48), pp. 765–778.
12. Chernyak Yu.I. Sistemnyy analiz v upravlenii ekonomikoy (Systems Analysis in Economic Management), Moscow, 1975, 191 р. (in Russ.)
13. Smirnov A.V. Modeli i sredstva kontseptual’nogo proyektirovaniya avtomatizirovannykh proizvodstvennykh sistem (Models and Means of Conceptual Design of Automated Production Systems), St. Petersburg, 1994, 369 р. (in Russ.)
14. Danchul A.N. Statistika i modelirovaniye sotsial’no-ekonomicheskikh protsessov (Statistics and Modeling of SocioEconomic Processes), Moscow, 2018, 103 р. (in Russ.)
15. Andryushkevich S.K., Kovalev S.P. Computing technologies, 2011, no. 6(16), pp. 3–12. (in Russ.)
16. Smirnov A., Levashova T., Ponomarev A., Shilov N. IEEE Access, 2021, vol. 9, pp. 135167–135185.
17. Shilov N.G. Journal of Information Technologies and Computing Systems, 2024, no. 2, pp. 52–64. (in Russ.)
18. Fiorini S.R. et al. Robotics and Computer-Integrated Manufacturing, 2015, vol. 33, рр. 3–11.
19. Giustozzi F., Saunier J., Zanni-Merk C. Procedia Computer Sciences, 2018, vol. 126, рр. 675–684.
20. SD3 — Simulation Delivery and Documentation Deviations, http://aber-owl.net/ontology/SD3.
Review
For citations:
Shilov N.G. Multi-aspect representation of the problem domain for configuring sociotechnical systems. Journal of Instrument Engineering. 2025;68(10):852-861. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-10-852-861






















