Modified Smith Predictor for Unstable Linear Systems
https://doi.org/10.17586/0021-3454-2025-68-9-753-761
Abstract
A new algorithm for controlling unstable linear systems with input delay is presented. Unlike known analogs, a control law is synthesized that is a modification of the Smith predictor with the simplest implementation that does not require complex integration methods. A fairly effective solution to the problem of stabilizing a closed system is proposed, ensuring the boundedness of all state variables and exponential stability of the equilibrium position.
About the Authors
A. A. PyrkinRussian Federation
Anton A. Pyrkin — Dr. Sci., Professor; Faculty of Control Systems and Robotics; Professor
St. Petersburg
K. Yu. Kalinin
Russian Federation
Konstantin Yu. Kalinin — Post-Graduate Student; Faculty of Control Systems and Robotics
St. Petersburg
References
1. Cypkin J.S. Avtomatika i Telemekhanika, 1946, no. 2, 3(7), pp. 107–129. (in Russ.)
2. Smith O.J.M. Chem. Eng. Prog., 1959, no. 53, pp. 217–219.
3. Smith O.J.M. ISA, 1959, vol. 6, рр. 28–33.
4. Manitius A.Z., Olbrot A.W. IEEE Transactions on Automatic Control, 1979, vol. 24, рр. 541–553.
5. Kwon W.H., Pearson A.E. IEEE Transactions on Automatic Control, 1980, vol. 25, рр. 266–269.
6. Arstein Z. IEEE Transactions on Automatic Control, 1982, vol. 27, рр. 869–879.
7. Krstic M., Smyshlyaev A. Systems & Control Letters, 2008, vol. 57, рр. 750–758.
8. Kristic M. Delay compensation for nonlinear, adaptive, and PDE systems, Birkhauser, 2009, 466 p.
9. Nikiforov V.O. and Gerasimov D.N. 62nd IEEE Conference on Decision and Control (CDC), IEEE, 2023, pp. 5708–5713
Review
For citations:
Pyrkin A.A., Kalinin K.Yu. Modified Smith Predictor for Unstable Linear Systems. Journal of Instrument Engineering. 2025;68(9):753-761. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-9-753-761






















