Preview

Journal of Instrument Engineering

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Field Strength Characteristics in Single-layer and Multi-layer Solenoids: Basic and Adaptive. The Zone of Uniformity

https://doi.org/10.17586/0021-3454-2025-68-8-715-724

Abstract

The problem of identifying the executive zone of the solenoid, i. e. that of its median part with a length of [L], where the field strength H is almost constant, is solved in order to conduct research in it. According to the results of the diagnostics of the multilayer solenoids used (four, differing in length L), the acceptability of solving this problem is shown by adapting the well-known fundamental expression for H in a single-layer solenoid to a multilayer one: by means of a coefficient slightly greater than unity. It was found that, based on the requirement that the H value in the center of the solenoid be very close (with an underestimation of no more than 1-2%) to the potential value (in an infinitely long solenoid), the length-to-diameter ratio should be L/D ≥ 5-7. To determine [L], the current value of H on its coordinate characteristic is estimated, which indicates a noticeable (within acceptable limits, in particular, 3%) decrease in H compared to the potential one. The distance x = [x] from the end of the solenoid is determined, where, upon the requirement of field uniformity, such a decrease in H, for example, by more than ε = 5%, is hardly acceptable. It is shown that, regardless of the length L of the solenoids, the length values [x] of their lateral parts, where the field strength is significantly underestimated, are close, and the relative values [x]/L are subject to feedback from L/D. The dependences for [L] and [L]/L on L and L/D are obtained graphically and analytically.

About the Authors

D. A. Sandulyak
MIREA – Russian Technological University
Russian Federation

Darya A. Sandulyak — PhD, Associate Professor; Department of Instruments and Information-Measuring Systems, Institute of Cybersecurity and Digital Technologies

Moscow



I. A. Solovev
MIREA – Russian Technological University
Russian Federation

Igor A. Solovev — Post-Graduate Student, Department of Instruments and Information-Measuring Systems, Institute of Cybersecurity and Digital Technologies

Moscow



A. V. Sandulyak
MIREA – Russian Technological University
Russian Federation

Alexander V. Sandulyak — Dr. Sci., Professor; Department of Instruments and Information-Measuring Systems, Laboratory of Magnetic Control and Separation of Materials; Chief Researcher

Moscow



A. A. Sandulyak
MIREA – Russian Technological University
Russian Federation

Anna A. Sandulyak — Dr. Sci., Professor; Department of Instruments and Information-Measuring Systems, Laboratory of Magnetic Control and Separation of Materials; Head of the Laboratory

Moscow



A. S. Kharin
MIREA – Russian Technological University
Russian Federation

Alexey S. Kharin — Department of Instruments and Information-Measuring Systems, Laboratory of Magnetic Control and Separation of Materials; Engineer

Moscow



D. A. Golovchenko
MIREA – Russian Technological University
Russian Federation

Darya A. Golovchenko — Department of Instruments and Information-Measuring Systems, Laboratory of Magnetic Control and Separation of Materials; Researcher

Moscow



References

1. Сhen D.X., Pardo E., Zhu Y.-H., Xiang L.-X., Ding J.-Q. Journal of Magnetism and Magnetic Materials, 2018, vol. 449, рр. 447–454, DOI: 10.1016/j.jmmm.2017.10.069.

2. Sandulyak D.A., Sandulyak A.A., Gorpinenko Yu.O., Sandulyak A.V., Solovev I.A. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2023, no. 3(144), pp. 49–61, DOI: 10.18698/0236-3933-2023-3-49-61. (in Russ.)

3. Patent RU2530463, Sposob izmereniya magnitnogo momenta obraztsov na SKVID-magnitometre (Method for Measuring Magnetic Moment of Samples on SQUID Magnetometer), D.A. Velikanov, Priority 19.12.2012. (in Russ.)

4. Patent RU2022292, Sposob izmereniya namagnichennosti ferromagnitnykh materialov sterzh-nevykh obraztsov (Method for Measuring Magnetization of Ferromagnetic Materials of Rod Samples), G.M. Popov, Priority 30.10.1994. (in Russ.)

5. Patent RU2279689, Vibratsionnyy magnitometr (Vibrating Magnetometer), S.A. Gudoshnikov, A.N. Kozlov, V.S. Skomarovskii, Priority 10.07.2004. (in Russ.)

6. Tsitsikyan G.N., Antipov M.Yu. Elektrichestvo, 2019, no. 10, pp. 48–53, DOI:10.24160/0013-5380-2019-10-48-53. (in Russ.)

7. Kapitza P.L., Filimonov S.I. Sov. Phys. Usp., 1968, no. 11, pp. 299–303, DOI: 10.1070/PU1968v011n03ABEH003833.

8. Patent RU2293344, Sposob opredeleniya krivoy namagnichivaniya ferromagnitnogo materiala (Method for Determining the Magnetization Curve of a Ferromagnetic Material), V.A. Zakharov, N.S. Zembekov. Priority 2005. (in Russ.)

9. Afanasyev Yu.V., Studentsov N.V., Khorev V.N., Chechurina E.N., Shchelkin A.P. Sredstva izme-reniy parametrov magnitnogo polyа (Means for Measuring Magnetic Field Parameters), Leningrad, 1979, 320 р. (in Russ.)

10. Sandulyak D.A., Soloviev I.A., Sandulyak A.V., Sandulyak A.A., Ershova V.A. Devices and systems, 2023, no. 11, pp. 1–9, DOI: 10.25791/pribor.11.2023.1450. (in Russ.)

11. Sandulyak A.A., Sandulyak A.V., Shitikova M.V., Tkachenko R.Yu., Sandulyak D.A., Gorpinenko Y.O. Mechanics of Advanced Materials and Structures, 2021, vol. 29:26, рр. 4972–4978, DOI: 10.1080/15376494.2021.1943575.

12. Purcell E.M. Electricity and Magnetism, vol. II Berkeley Physics Course, McGraw-Hill, 1964.

13. Pankin V.A. Perspektivnoye razvitiye nauki, tekhniki i tekhnologiy (Prospective Development of Science, Engineering and Technology), Proceedings of the 3rd International Scientific and Practical Conference, 2013, vol. 3.

14. Varyukhin V.N., Moroz T.T., Burkhovetsky V.V., Shkuratov B.E., Izotov A.I., Belousov N.N. Physics and High Pressure Technology, 2017, no. 3(27), pp. 149–154. (in Russ.)

15. Lazarev B.G., Lazareva L.S., Goridov S.I. Reports of the USSR Academy of Sciences, 1971, no. 5(199), pp. 1044–1047. (in Russ.)

16. Alekseevsky N.E., ed., Sverkhprovodyashchiye solenoidy (Superconducting Solenoids), Moscow, 1965, 287 р. (in Russ.)

17. Montgomery D.B. Solenoid magnet design, NY, Wiley, 1969, 312 p.

18. Boyko B.B., Soyko A.K., Mitkovskaya L.P. Pribory i tekhnika eksperimenta, 1993, no. 5, pp. 13–26. (in Russ.)

19. Golovin Yu.I. Physics of the Solid State, 2004, no. 5(46), pp. 789–824.

20. Zhmakin Yu.D., Rybyanets V.A., Zagulyaev D.V., Konovalov S.V., Kuznetsov V.A., Gromov V.E. Fundamental’nye problemy sovremennogo materialovedenia, 2009, no. 4(6), pp. 58–60. (in Russ.)

21. Patent RU 2829110, Sposob identifikatsii v mnogosloynom udlinennom solenoide ispolnitel’noy zony (Identification Method in a Multilayer Elongated Solenoid of the Executive Zone), D.A. Sandulyak, A.S. Kharin, A.A. Sandulyak, I.A. Soloviev, A.V. Sandulyak, Priority 2024. (in Russ.)


Review

For citations:


Sandulyak D.A., Solovev I.A., Sandulyak A.V., Sandulyak A.A., Kharin A.S., Golovchenko D.A. Field Strength Characteristics in Single-layer and Multi-layer Solenoids: Basic and Adaptive. The Zone of Uniformity. Journal of Instrument Engineering. 2025;68(8):715-724. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-8-715-724

Views: 24


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)