 Open Access
                Open Access 
                 Subscription Access
                                    Subscription Access
                            Reflector with a Cylindrical Face and a Non-right Angle Between the Flat Ones for Three-coordinate Measurements
https://doi.org/10.17586/0021-3454-2025-68-8-696-703
Abstract
The control element of the autocollimation system (reflector) is considered, which is a mirror tetrahedron, the lower face of which is replaced by a cylindrical surface, while the angle between the flat faces is not equal to 90 °. A mathematical model of this reflector is synthesized, describing the image change depended on the rotation angles. The possibility of using the model to measure characteristic image parameters is analyzed. A computer model of the autocollimation system (ACT-60 autocollimator) is created with Zemax software tool. An algorithm for measuring the rotation angles of a control element based on determining the characteristic image parameters is presented. Based on the simulation results, the consistency of mathematical and computer models is proved using the overlay method. The results obtained can be applied in systems requiring precise angular positioning of elements, for example, in the study of deflections and deformations of experimental structures, installation and assembly of large-sized parts of products, installation of aircraft and ship slipways.
About the Authors
M. M. NikitinRussian Federation
Mikhail M. Nikitin — Higher School of Engineering and Technology; Engineer
St. Petersburg
I. A. Konyakhin
Russian Federation
Igor A. Konyakhin — Dr. Sci., Professor; Faculty of Engineering Research; Professor
St. Petersburg
References
1. Nogin A.A., Konyakhin I.A. Studies in Systems, Decision and Control, 2019, vol. 174, pp. 297–304.
2. Nogin A.A., Konyakhin I.A. Studies in Systems, Decision and Control, 2020, vol. 261, pp. 199–204.
3. Konyakhin I.A., Dang D., Turgalieva T.V. Studies in Systems, Decision and Control, 2022, vol. 419, pp. 221–233.
4. Yanhe Y., Sheng C., Yanfeng Q. Applied Optics, 2016, no. 35(55), pp. 9986–9991.
5. Turgalieva T., Konyakhin I. Proc. SPIE, 2013, vol. 8788, рр. 878832.
6. Konyakhin I.A., Li R., Smekhov A., and Kleshchenok M. Latin America Optics and Photonics Conference, OSA Technical Digest, 2014, рp. LTh4A.49.
7. Konyakhin I.А., Moiseeva А.А., Hoang Van Phong, Journal of Instrument Engineering, 2016, no. 7(59), pp. 563–570.
8. Khanoh B.Yu. Opticheskiye otrazhateli tetraedricheskogo tipa v aktivnykh sistemakh (Optical Reflectors of Tetrahedral Type in Active Systems), Minsk, 1982, 160 р. (in Russ.)
9. Konyakhin I.A., Timofeev A.N., Konyakhin A.I. Proceedings of SPIE, 2013, vol. 8788, pp. 87882C.
10. Arakantsev K.G., Konyakhin I.A., and Timofeev A.N. Key Engineering Materials, 2010, no. 437, pp. 237–241.
11. Yong Ruan, Quiqin Hua, Tao Yang, Tianrong Xu, Jing Jiang, Zhiqiang Zhao, Tao Tang, Optical Engineering, 2020, no. 1(59), pp. 017102–017102.
12. Nikitin M.M., Konyakhin I.A., Dobrykh F.G. Journal of Instrument Engineering, 2022, no. 4(65), pp. 262–270, DOI: 10.17586/0021-3454-2022-65-4-262-270.1. (in Russ.)
13. Li R., Xiao H., Xie L., Feng T., Ma Y., Guo J., Zhou M., Nikitin M., Konyakhin I. Optics express, 2022, no. 21(30), pp. 38727–38744.
14. Li R., Zhen Y., Di K., Wang W., Nikitin M., Tong M., Zhang Y., Zou X., Konyakhin I. Measurement Science and Technology, 2021, no. 11(32), pp. 115005.
15. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Handbook of Mathematics for Scientists and Engineers), Moscow, 1973, 832 р. (in Russ.)
16. Ivanov P.A. Photonics Russia, 2018, no. 1(69), pp. 66–74 (in Russ.)
Review
For citations:
Nikitin M.M., Konyakhin I.A. Reflector with a Cylindrical Face and a Non-right Angle Between the Flat Ones for Three-coordinate Measurements. Journal of Instrument Engineering. 2025;68(8):696-703. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-8-696-703
 
                    






















 
             
  Email this article
            Email this article