

Method for Fault Identifying in Nonlinear Systems
https://doi.org/10.17586/0021-3454-2025-68-8-668-679
Abstract
The problem of estimating the magnitude of faults in nonlinear dynamic systems in the presence of external disturbances is solved. The solution uses optimal control methods based on the transformation of the original system to a reduced linear system of a special type, sensitive to faults and insensitive to disturbances. Unlike sliding observers, traditionally used to solve this problem, the proposed approach allows avoiding high-frequency switching.
About the Authors
A. A. KabanovRussian Federation
Aleksei A. Kabanov — PhD, Associate Professor; Research Laboratory of Robotics and Intelligent Control Systems, Head of the Laboratory
Sevastopol
A. N. Zhirabok
Russian Federation
Aleksei N. Zhirabok — Dr. Sci., Professor; Department of Automation and Robotics
Vladivostok
A. V. Zuev
Russian Federation
Aleksandr V. Zuev — Dr. Sci., Associate Professor; Laboratory of intelligent systems; Head of the Laboratory
Vladivostok
V. F. Filaretov
Russian Federation
Vladimir F. Filaretov — Dr. Sci., Professor; Laboratory of Robotic systems; Head of the Laboratory
Vladivostok
References
1. Kabanov A.A., Zuev A.V., Zhirabok A.N., Filaretov V.F. Avtomatika i Telemehanika, 2023, no. 9, pp. 93–105. (in Russ.)
2. Kabanov A.A., Zuev A.V., Filaretov V.F., Zhirabok A.N. Journal of Instrument Engineering, 2022, no. 5(65), pp. 335–342, DOI: 10.17586/0021-3454-2022-65-5-335-342. (in Russ.)
3. Edwards C., Spurgeon S., Patton R. Automatica, 2000, vol. 36, рр. 541–553.
4. Floquet T., Barbot J., Perruquetti W., Djemai M. Intern. J. Control, 2004, vol. 77, рр. 622–629.
5. Yan X., Edwards C. Automatica, 2007, vol. 43, рр. 1605–1614.
6. Rios H., Efimov D., Davila J., Raissi T., Fridman L., Zolghadri A. Intern. J. Adapt. Contr. and Signal Proc., 2014, vol. 28, рр. 1372–1397.
7. Zhirabok A.N., Shumsky A.E., Zuev A.V., Filaretov V.F. Journal of Computer and Systems Sciences International, 2022, no. 3(61), pp. 313–321.
8. Zhirabok A.N., Shumsky A.E., Zuev A.V., Sergiyenko O. Automation and Remote Control, 2022, no. 2(83), pp. 214–236.
9. Ríos-Ruiz C., Osorio-Gordillo G., Souley-Ali H., Darouach M., Astorga-Zaragoza C. Proc. 2019 27th Mediterranean Conference on Control and Automation (MED), 2019, рp. 165–170.
10. Margun A.A., Bui V.H., Bobtsov A.A. Avtomatika i Telemehanika, 2024, no. 11, pp. 36–55. (in Russ.)
11. Nemati F., Safavi S., Zemouche A. Automatica, 2019, vol. 107, рр. 474–482.
12. Venkateswaran S., Liu S., Wilhite B., Kravaris C. Intern. J. Control, 2022, vol. 95, рр. 804–820.
13. Kravaris C. IFAC-PapersOnLine, 2016, vol. 49, рр. 505–510.
14. Isidory A. Nonlinear control systems, Berlin, Springer-Verlag, 1989.
15. Mufti I.H., Chow C.K., Stock F.T. SIAM Rev., 1969, no. 4(11), pp. 616–619.
16. Naidu D.S. Optimal control systems. Electrical Engineering Handbook, Florida, Boca Raton, CRC Press, 2003, 275 p.
17. Bryson A.E, jr. & Ho Y.C. Applied optimal control: optimization, estimation, and control, Waltham, MA, Blaisdell, 1969, 481 p.
18. Khamis A., Naidu D. 2014 American Control Conference (ACC) Portland, Oregon, USA, June 4–6, 2014, рр. 2420–2425.
19. Zhirabok A.N., Ir K.C. Journal of Computer and Systems Sciences International, 2022, no. 1(61), pp. 38–46.
20. Zhirabok A.N., Zuev A.V., Protcenko A.A., Il K.Ch. Measurement Techniques, 2022, no. 6(65), pp. 405–411.
21. Levant A. Intern. J. Control, 2003, vol. 76, рр. 924–941.
22. LEM. LAH 50-P: Current Transducer LAH 50-P, LEM, 2025, https://www.lem.com/sites/default/files/products_datasheets/lah_50-p.pdf.
Review
For citations:
Kabanov A.A., Zhirabok A.N., Zuev A.V., Filaretov V.F. Method for Fault Identifying in Nonlinear Systems. Journal of Instrument Engineering. 2025;68(8):668-679. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-8-668-679