

Application of additive technologies in the preparation of sheet stamping production
https://doi.org/10.17586/0021-3454-2025-68-7-623-632
Abstract
The features of sheet stamping production are discussed. The technology is characterized by the speed and stability of the manufacturing process of parts with high shape repeatability, and therefore it is widely used in mass production. Due to the appearance of a large number of experimental design works, sheet stamping is increasingly used for the manufacture of small series of products. The duration of the technological preparation of production exceeds the duration of the stamping process itself, which necessitates the use of methods to increase production efficiency, reduce time and financial costs, as well as one of the most important indicators of competitive stamping production is its flexibility - the speed of changeover. The use of modern additive technologies is supposed to bring the changeover speed of stamping equipment to a new level. An overview of publications on the assessment of the possibility of using additive technologies in the manufacture of screw tooling is presented, as well as an analysis of the advantages and disadvantages of using tooling.
About the Authors
M. G. LopatovRussian Federation
Maksim G. Lopatov — Post-Graduate Student; Faculty of Control Systems and Robotics; Department of Instrumentation Technologies
St. Petersburg
O. S. Timofeeva
Russian Federation
Olga S. Timofeeva — PhD; Faculty of Control Systems and Robotics; Associate Professor
St. Petersburg
References
1. Mitrofanov S.P. Gruppovaya tekhnologiya mashinostroitel'nogo proizvodstva. T.1. Organizatsiya gruppovogo proizvodstva (Group Technology of Mechanical Engineering Production. Vol. 1. Organization of Group Production), Leningrad, 1983, 407 р. (in Russ.)
2. Mitrofanov S.P. et al. Gibkiye tekhnologicheskiye sistemy kholodnoy shtampovki (Flexible Technological Systems of Cold Stamping), Leningrad, 1987, 287 р. (in Russ.)
3. Mitrofanov S.P., Kulikov D.D., Milyaev O.N., Padun B.S. Tekhnologicheskaya podgotovka gibkikh proizvodstvennykh system (Technological Preparation of Flexible Manufacturing Systems), Leningrad, 1987, 352 р. (in Russ.)
4. Lyubimov V.I., Belyavin K.E. Organizatsionno-tekhnicheskiye osnovy gibkogo avtomatizirovannogo proizvodstva (Organizational and Technical Foundations of Flexible Automated Production), Minsk, 2012, 200 р. (in Russ.)
5. Vasiliev V.N., Sadovskaya T.G. Organizatsionno-ekonomicheskiye osnovy gibkogo proizvodstva (Organizational and Economic Foundations of Flexible Production), Moscow, 1988, 272 р. (in Russ.)
6. Egorov K.N., Egorova S.A., Petryakova V.G. Perspektivy razvitiya nauki v sovremennom mire (Prospects for the Development of Science in the Modern World), Collection of scientific articles of the VI International Scientific and Practical Conference, Ufa, June 29, 2021, рр. 21–41. (in Russ.)
7. Nagibovich O.A., Golota A.S., Krassiy A.B. Voyenno-meditsinskiy zhurnal, 2019, no. 4(340), pp. 60–63. (in Russ.)
8. Smurov I.Yu., Konov S.G., Kotoban D.V. Materials Science News. Science and Technology, 2015, no. 2(14), pp.). С. 11–22. (in Russ.)
9. Dremukhin M.A., Nagovitsyn V.N. Spacecraft and Technologies, 2022, no. 1(6), pp. 21–28, DOI 10.26732/j. st.2022.1.03. (in Russ.)
10. Kalish P.E. News of the Tula state university. Technical sciences, 2022, no. 12, pp. 589–594, DOI 10.24412/2071-6168-2022-12-589-595. (in Russ.)
11. Chemodurov A.N. News of the Tula state university. Technical sciences, 2016, no. 8-2, pp. 210–217. (in Russ.)
12. Miroshnichenko V.S., Golofaev A.N., Taranenko N.A. Metallurgiya XXI stoletiya glazami molodykh (Metallurgy of the 21st Century through the Eyes of the Young), Collection of Reports of the V International Scientific and Practical Conference of Young Scientists and Students, Donetsk, May 22, 2019, рр. 111–113. (in Russ.)
13. Gaysina D.G. Research and development – 2024, Collection of Articles from the International Scientific and Practical Conference, Petrozavodsk, May 20, 2024, рр. 34–40. (in Russ.)
14. Luneva D.A., Kozhevnikova E.O., Kaloshina S.V. Bulletin of Perm National Research Polytechnic University. Construction and Architecture, 2017, no. 1(8), pp. 90–101, DOI 10.15593/2224-9826/2017.1.08. (in Russ.)
15. Vatin N.I., Chumadova L.I., Goncharov I.S. et al. Construction of Unique Buildings and Structures, 2017, no. 1(52), pp. 27–46, DOI 10.18720/CUBS.52.3.
16. Konakova I.P., Pirogova I.I. Sherokhovatosti poverkhnostey i ikh prakticheskoye primeneniye v programme KOMPAS (Surface Roughness and its Practical Application in the KOMPAS Program), Ekaterinburg, 2014, 104 р. (in Russ.)
17. Rudman L.I., ed., Spravochnik konstruktora shtampov: Listovaya shtampovka (Stamp Designer's Handbook: Sheet Stamping, Moscow, 1988, 496 р. (in Russ.)
18. Asnafi N., Rajalampi J., Aspenberg D. IOP Conference Series Materials Science and Engineering, 2019, no. 1(651), pp. 012010, DOI:10.1088/1757-899X/651/1/012010.
19. Skåre Th. & Asnafi N. IOP Conference Series: Materials Science and Engineering, 2020, vol. 967, рр. 012040, 10.1088/1757-899X/967/1/012040.
20. Asnafi N., Rajalampi J., Aspenberg D., & Alveflo A. BHM Berg- und Hüttenmännische Monatshefte, 2020, vol. 165, 10.1007/s00501-020-00961-8.
21. Kononov I.Yu., Aksenov L.B. Zagotovitel'nyye proizvodstva v mashinostroyenii, 2016, no. 6, pp. 22–26. (in Russ.)
22. Kononov I.Yu., Aksenov L.B. Nedelya nauki SPbPU (SPbPU Science Week), Proceedings of the Scientific Conference with International Participation, IMMiT, Part 2, St. Petersburg, 2016, рр. 215–218. (in Russ.)
23. Du Z.H., Chua C.K., Chua Y.S., Loh-Lee K.G., Lim S.T. Intern. J. of Advanced Manufacturing Technology, 2002, no. 1(19), pp. 411–417.
24. Durgun I. Rapid Prototyping Journal, 2015, no. 4(21), pp. 412–422.
25. ElMaraghy H.A., ed., Changeable and Reconfigurable Manufacturing Systems, Springer-Verlag, London, 2009.
26. Tondini F., Arinbjarnar U., Basso A., Nielsen Ch.V. Procedia CIRP, 2021, vol. 103, pр. 91–96.
27. Cheah C.M., Chua C.K., Lee C.W., Lim S.T., Eu K.H., Lin L.T. Advanced Manufacturing Technology, 2002, no. 7(19), pp. 510–515.
28. Serezhkin M.A., Grossman M.F. Zagotovitel'nyye proizvodstva v mashinostroyenii, 2023, no. 9(21), pp. 396–406. (in Russ.)
29. Lavrinenko V.Yu., Serezhkin M.A., Balakhontseva N.A., Sadykov Zh. Fundamental and Applied Problems of Engineering and Technology, 2023, no. 2(358), pp. 27–34. (in Russ.)
30. Serezhkin M.A., Grossman M.F. Fundamental and Applied Problems of Engineering and Technology, 2023, no. 4(360), pp. 172–183. (in Russ.)
31. Serezhkin M.A., Klimyuk D.O., Plokhikh A.I. Fundamental and Applied Problems of Engineering and Technology, 2020, no. 3(341), pp. 20–30. (in Russ.)
32. Klimyuk D., Serezhkin M., Plokhikh A. Materials Today: Proceedings, 2021, vol. 38, рр. 1579–1583.
33. Frohn-Sörensen P., Geueke M., Tuli T.B. et al. Intern. J. Adv. Manuf. Technol., 2021, vol. 115, рр. 2623–2637.
34. Schuh G., Bergweiler G., Bickendorf P., Fiedler F., Colag C. Procedia CIRP, 2020, vol. 93, рр. 20–25.
35. Naotaka Nakamura, Ken-ichiro Mori, Fumie Abe, Yohei Abe, Procedia Manufacturing, 2018, vol. 15, pр. 737–742.
36. Giolu C., Pupăză C., & Amza C. Polymers, 2024, vol. 16, рр. 1894, 10.3390/polym16131894.
37. Aksenov L.B. et al. Solid State Phenomena, 2021, vol. 316, pp. 110–115.
38. Ziemian C., Sharma M., & Ziemi S. Mechanical Engineering, April 2012, рр. 159–180, DOI:10.5772/34233.
39. Zhong W., Li F., Zhang Z. et al. Materials Science and Engineering: A, 2001, no. 2(301), pp. 125–130.
Review
For citations:
Lopatov M.G., Timofeeva O.S. Application of additive technologies in the preparation of sheet stamping production. Journal of Instrument Engineering. 2025;68(7):623-632. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-7-623-632