

Methods for solving astronavigation problems using digital optical cameras
https://doi.org/10.17586/0021-3454-2025-68-7-609-616
Abstract
Two methods of determining navigation parameters using an astronavigation system with a star tracker, which is a digital camera with a wide field of view, are considered. The first method used in marine astronomy is a traditional difference-altitude-azimuth method for solving the navigation problem of observing a group of stars and the visible horizon. The second method, used in, is based on measuring the orientation of a star tracker in an inertial (equatorial) coordinate system and its relationship to geocentric and local geographic coordinate systems. It is noted that the use of a high-resolution digital camera as a star sensor for astroinertial navigation systems makes it possible to implement both methods for determining navigation parameters. It is emphasized that the nature of the errors in determining orientation by the two methods under consideration is different, so that their combined application increases the accuracy of solving the navigation problem. A scheme of an algorithm for the integrated application of orientation data relative to the horizon based on the readings of inertial sensors and a visible horizon sensor is presented. Results of digital simulation.
About the Authors
G. V. KondrashkinRussian Federation
Georgiy V. Kondrashkin — Post-Graduate Student; Innovation Technological Center; Engineer
Moscow
A. S. Bolotnov
Russian Federation
Albert S. Bolotnov — Post-Graduate Student; Innovation Technological Center; Engineer
Moscow
M. Yu. Shkatov
Russian Federation
Michail Yu. Shkatov — PhD, Associate Professor; Innovation Technological Center; Researcher
Moscow
References
1. Skubko R.A., Shkatov M.Iu. Morekhodnaia astronomiia (The Nautical astronomу), Book 2, 2004, 258 р. (in Russ.)
2. Titov R.Yu., Fain G.I. Morekhodnaya astronomiya (Nautical Astronomy), Moscow, 1984, 252 р. (in Russ.)
3. Krasavtsev B.I. Morekhodnaya astronomiya (Nautical Astronomy), Moscow, 1978, 304 р. (in Russ.)
4. Nguyen V.V., Popov S.S. Sbornik izbrannykh statey po materialam nauchnykh konferentsiy GNII "Natsrazvitiye" (Collection of Selected Articles Based on the materials of Scientific Conferences of the State Research Institute "NatSrazvitie"), 2020, рр. 51–53. (in Russ.)
5. Avanesov G.A., Bessonov R.V., Smetanin P.S. Mechanics, Control and Informatics, 2015, no. 2(7), pp. 159–174. (in Russ.)
6. Avanesov G.A., Bessonov R.V., Kurkina A.N., Nikitin A.V., Sazonov V.V. Cosmic Research, 2018, no. 1(56), pp. 38– 53. (in Russ.)
7. Avanesov G.A., Bessonov R.V., Kurkina А.N., Mysnik E.A., Liskiv А.S., Ludomirskiy M.B., Kayutin I.S., Yamshikov N.E. Mechanics, Control and Informatics, 2013, no. 1(13), pp. 9–29. (in Russ.)
8. Avanesov G.A., Bessonov R.V., Kurkina A.N., Lyudomirsky M.B., Kayutin I.S., Yamshchikov N.E. Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa, 2013, no. 2(10), pp. 9–29. (in Russ.)
9. Salychev O.S. Verified Approaches to inertial navigation, Moscow, 2017, 368 p.
10. Matveev V.V. Inertsial'nyye navigatsionnyye sistemy (Inertial Navigation Systems), Tula, 2012, 198 р. (in Russ.)
11. Akishin V.V. Proceedings of the Moscow Institute of Electromechanics and Automation (MIEA), 2013, no. 6, pp. 36– 45. (in Russ.)
12. Loginov M.Yu., Chelnokov Yu.N. Mathematics. Mechanics, 2012, no. 14, pp. 120–123. (in Russ.)
13. Golovan A.A., Mishin V.Y., Chirkin M.V., Molchanov A.V. Journal of Computer and Systems Sciences International, 2021, no. 4(60), pp. 627–638.
14. Dusha D., Boles W., Walker R. Proceeding 12th Australian International Aerospace Congress, Melbourne, Australia, 2007, 19 p.
15. Malysheva Yu.A. Information Systems, Mechanics and Control, 2012, no. 8, pp. 23–32. (in Russ.).
Review
For citations:
Kondrashkin G.V., Bolotnov A.S., Shkatov M.Yu. Methods for solving astronavigation problems using digital optical cameras. Journal of Instrument Engineering. 2025;68(7):609-616. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-7-609-616