Channel Error of the Air Motion Parameters Measurement System for Aircraft with an Integrated Fuselage Flow Receiver
https://doi.org/10.17586/0021-3454-2024-67-10-822-830
Abstract
The relevance of the task of replenishing the arsenal of means for measuring air parameters of aircraft movement relative to the surrounding air environment is noted. These means should be characterized by a simple design, low weight and cost, the possibility of use on small-sized and ultra-light aircraft, manned, unmanned and remotely piloted aircraft of the aircraft configuration. The advantages of the system for measuring the air parameters of aircraft movement relative to the environment with one integrated non-protruding fuselage receiver of the incident air flow, with built-in converters of primary information parameters into electrical signals and a built-in computer that generates the output digital signals of the system are indicated. The relevance of studying the instrumental and methodological errors of the system channels is noted. Analytical models of instrumental errors of the system channels for measuring airborne parameters of aircraft movement with an integrated fuselage flow receiver are developed, allowing one to study the influence of errors of functional elements on the instrumental error of the measuring channels of the system and to select the element base of the system. Analytical models are obtained, an assessment is made of the methodological errors of the channels of the system for measuring the air parameters of aircraft movement with an integrated fuselage flow receiver, caused by the distortion of the incoming air flow at the installation site of the flow receiver during aircraft movement and flow around the fuselage, and a direction for reducing the methodological errors of the system channels is indicated.
About the Authors
E. S. EfremovaRussian Federation
Elena S. Efremova — PhD; Department of Electronic Instrumentation and Quality Management; Associate Professor
Kazan
an
V. V. Soldatkin
Russian Federation
Vyacheslav V. Soldatkin — Dr. Sci., Associate Professor; Department of Electronic Instrumentation and Quality Management; Professor
Kazan
V. M. Soldatkin
Russian Federation
Vladimir M. Soldatkin — Dr. Sci., Professor; Department of Electronic Instrumentation and Quality Management; Professor
Kazan
References
1. Makarov N.N. Sistemy obespecheniya bezopasnosti funktsionirovaniya bortovogo ergaticheskogo kompleksa: Teoriya, proyektirovaniye, primeneniye (Systems for Ensuring the Safety of the Functioning of the Onboard Ergatic Complex: Theory, Design, Application), Moscow, 2009, 760 р. (in Russ.)
2. Akimov A.N., Vorob’yev V.V., Demchenko O.F. et al. Osobennosti proyektirovaniya legkikh boyevykh i uchebnotrenirovochnykh samoletov (Features of the Design of Light Combat and Training Aircraft), Moscow, 2005, 496 р. (in Russ.)
3. Kravtsov V.G., Alekseev N.V. Instruments and Systems: Monitoring, Control, and Diagnostics, 2000, no. 8, pp. 47–50. (in Russ.)
4. Klyuev G.I., Makarov N.N., Soldatkin V.M., Efi I.P. Izmeriteli aerodinamicheskikh parametrov letatel’nykh apparatov (Meters of Aerodynamic Parameters of Aircraft), Ulyanovsk, 2005, 509 р. (in Russ.)
5. Soldatkin V.M., Ganeev F.A., Soldatkin V.V., Nikitin A.V. Aviatsionnyye pribory, izmeritel’no-vychislitel’nyye sistemy i kompleksy: Printsipy postroyeniya, algoritmy obrabotki informatsii, kharakteristiki i pogreshnosti (Aviation Instruments, Measuring and Computing Systems and Complexes: Design Principles, Information Processing Algorithms, Characteristics and Errors), Kazan, 2014, 526 р. (in Russ.)
6. Soldatkin V.M. Metody i sredstva izmereniya aerodinamicheskikh uglov letatel’nykh apparatov (Methods and Means for Measuring the Aerodynamic Angles of Aircraft), Kazan, 2001, 448 р. (in Russ.)
7. Efremova E.S., Soldatkin V.V. Journal of Instrument Engineering, 2020, no. 8(63), pp. 749–755. (in Russ.)
8. Krylov D.L., Soldatkina E.S. Russian Aeronautics, 2015, no. 4, pp. 466–471.
9. Efremova E.S., Nikitin A.V., Soldatkin V.V., Soldatkin V.M. Journal of Instrument Engineering, 2021, no. 9(64), pp. 774–781. (in Russ.)
10. Efremova E.S., Miftakhov B.I., Soldatkin V.V., Soldatkin V.M. Journal of Instrument Engineering, 2023, no. 6(66), pp. 457–463. (in Russ.)
11. Soldatkin V.M., Soldatkin V.V., Efremova E.S., Nikitin A.V. Journal of Instrument Engineering, 2024, no. 2(67), pp. 145–152. (in Russ.)
12. Soldatkin V.M., Soldatkin V.V., Kozlovskii R.V., Kozlovskii G.V. Vestnik KGTU im. A.N. Tupoleva, 2023, no. 3(66), pp. 91–96. (in Russ.)
13. Soldatkin V.M., Soldatkin V.V., Efremova E.S., Nikitin A.V. Russian Aeronautics, 2023, no. 4, pp. 822–828.
14. Kharin E.G., Kopylov V.A. Tekhnologii letnykh ispytaniy bortovogo oborudovaniya letatel’nykh apparatov s primeneniyem kompleksa bortovykh trayektornykh izmereniy (Technologies for Flight Tests of Onboard Equipment of Aircraft Using a Complex of On-Board Path Measurements), Moscow, 2012, 360 р. (in Russ.)
Review
For citations:
Efremova E.S., Soldatkin V.V., Soldatkin V.M. Channel Error of the Air Motion Parameters Measurement System for Aircraft with an Integrated Fuselage Flow Receiver. Journal of Instrument Engineering. 2024;67(10):822-830. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-10-822-830