

Control of a ground-based wheeled gyrostabilizer as a carrier of equipment for optical monitoring of defects in the outer surface of an aircraft
https://doi.org/10.17586/0021-3454-2025-68-7-576-589
Abstract
A single-axis ground wheeled gyrostabilizer (GWG) with gravity-flywheel control of its two-stage platform, which is understood as a carrier of equipment for optical monitoring of defects in the lower part of the outer surface of an aircraft (AC) at its parking lot, is considered. The purpose of the study is to develop a method for forming the GWG motion trajectory, algorithms for controlling this motion and the angular orientation of the GWG platform during monitoring. The design scheme of a two-wheeled GWG, on the platform of which a camera with an optical axis passing through the center of the wheelset axis is installed, is analyzed. The motion trajectory of the GWG wheelset axis center is formed in a horizontal plane parallel to the plane of the underlying surface of the AC parking lot. Based on the use of a modified dynamic model of GWG motion, an algorithm for its trajectory control of moments developed by the motor-wheel engines as a function of the control linear and angular velocities of GWG motion is considered. An algorithm for controlling the angular orientation of the NCG platform relative to the horizon plane is developed using flywheels as sources of control reactive, gyroscopic, and gravitational moments. The results of simulation modeling confirmed the effectiveness of the decisions made.
Keywords
About the Authors
B. S. AleshinRussian Federation
Boris S. Aleshin — Dr. Sci., Professor, Academician of the RAS; Department of Flight-Navigation and Information-Measuring Systems; Head of the Department
Moskow
A. I. Chernomorsky
Russian Federation
Alexander I. Chernomorsky — PhD, Associate Professor; Scientific Department 305; Senior Researcher
Moskow
V. A. Petrukhin
Russian Federation
Vladimir A. Petrukhin —Department of Flight-Navigation and InformationMeasuring Systems; Senior Lecturer
Moskow
References
1. Kiselev D.Yu., Makarovsky I.M. Nerazrushayushchiye metody kontrolya tekhnicheskogo sostoyaniya vozdushnykh sudov (Non-Destructive Methods of Testing the Technical Condition of Aircraft), Samara, 2017. (in Russ.)
2. Lafiosca P., Fan I.-S., Avdelidis N.P. Insight - Non-Destructive Testing and Condition Monitoring, 2023, no. 7(65), pp. 378–383, DOI:10.1784/insi.2023.65.7.378.
3. Jovančević I., Pham H.-H., Orteu J.-J., Gilblas R., Harvent J., Maurice X., & Brèthes L. Journal of Nondestructive Evaluation, 2017, no. 4(36), DOI:10.1007/s10921-017-0453-1.
4. Aleshin B.S., Chernomorskiy A.I. et al. Perspektivnyye sistemy i zadachi upravleniya (Advanced Control Systems and Tasks), Proceedings of the XVI All-Russian Scientific and Practical Conference and the XII Youth School-Seminar, Rostov-on-Don, 2021, рр. 116–118. (in Russ.)
5. Patent US20160264262A1, Collaborative robot for visually inspecting an aircraft, N. Colin, F. Guibert., Published 16.09.2016.
6. Almadhoun R., Taha T., Dias J., Seneviratne L., & Zweiri Y. Lecture Notes in Computer Science, 2019, рр. 243–266, DOI:10.1007/978-3-030-27541-9_21.
7. Bugaj M., Novak A., Stelmach A., and Lusiak T. New Trends in Civil Aviation (NTCA), 2020, pр. 45–50.
8. Shang J., Sattar T., Chen S. and Bridge B. Industrial Robot, 2007, no. 6(34), pp. 495–502, https://doi. org/10.1108/01439910710832093.
9. Achat S., Marzat J., & Moras J. International Conference on Informatics in Control, Automation and Robotics, 2023, рр. 433–443, DOI:10.5220/0012185300003543.
10. Aleshin B.S., Chernomorsky A.I., Kuris E.D., Lelkov K.S., Ivakin M. INCAS Bulletin, 2020, no. 12, pp. 21–31, DOI:10.13111/2066-8201.2020.12.S.2.
11. Mikheev V.V., Chernomorskiy A.I., Petrukhin V.A. Aviatsiya i kosmonavtika-2018 (Aviation and Cosmonautics-2018), Abstracts of the 17th International Conference, 2018, рр. 186–187. (in Russ.)
12. Petrukhin V.A., Lelkov K.S., Chernomorskiy A.I. XXX Yubileynaya Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam (XXX Anniversary St. Petersburg International Conference on Integrated Navigation Systems), Conference Proceedings, St. Petersburg, 2023, рр. 85–90. (in Russ.)
13. Yang G. and Kapila V. Proc. 41st IEEE Conf. Decision Control, Dec. 2002, pp. 1301–1306.
14. Cohen I., Epstein C., Isaiah P., Kuzi S., & Shima T. IEEE Transactions on Automation Science and Engineering, 2017, no. 1(14), рр. 383–390, DOI:10.1109/tase.2016.2602385.
15. Aleshin B.S., Chernomorsky A.I. et al. XXVIII Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam (XXVIII St. Petersburg International Conference on Integrated Navigation Systems), St. Petersburg, 2021, рр. 158–165. (in Russ.)
16. Aleshin B.S., Chernomorsky A.I., Petrukhin V.A., Lelkov K.S. News of the Tula state university. Technical sciences, 2023, no. 9, pp. 293–302, DOI: 10.24412/2071-6168-2023-9-293-294. (in Russ.)
17. Maksimov V.N., Chernomorskii A.I. Journal of Computer and Systems Sciences International, 2015, no. 3(54), pp. 483–494.
18. De Luca A., Oriolo G., Vendittelli M. Lecture Notes in Control and Information Sciences, London, 2001, vol. 270, pp. 181–226.
19. Oriolo G., De Luca A., Vendittelli M. IEEE Transactions on Control Systems Technology, 2002, no. 6(10), pp. 835–852.
Review
For citations:
Aleshin B.S., Chernomorsky A.I., Petrukhin V.A. Control of a ground-based wheeled gyrostabilizer as a carrier of equipment for optical monitoring of defects in the outer surface of an aircraft. Journal of Instrument Engineering. 2025;68(7):576-589. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-7-576-589