

Creation of thin-film multilayer structures by magnetron sputtering and their elemental analysis
https://doi.org/10.17586/0021-3454-2025-68-5-417-426
Abstract
The process of formation of a multilayer Al-Ni structure by the magnetron sputtering method used for the reaction of self-propagating high-temperature synthesis is considered. The magnetron sputtering system arrangement is proposed, which allows using six magnetrons and an ion source in a single technological cycle of formation of a multilayer Al-Ni structure, which leads to an increase in the rate of its growth. A sample of the obtained Al-Ni structure is studied using scanning electron microscopy. It is shown that the sample has a thickness of 50 μm, the thickness of one bilayer is 80 nm. The results of studying the obtained structures using Auger spectroscopy and scanning electron microscopy are presented, and an elemental analysis of the formed multilayer structure is carried out.
About the Authors
D. E. ShashinRussian Federation
Dmitry Е. Shashin — PhD, Associate Professor, Department of Radio Equipment Design and Production; Associate Professor
Yoshkar-Ola
N. I. Sushentsov
Russian Federation
Nikolay I. Sushentsov — PhD, Associate Professor, Department of Radio Equipment Design and Production; Head of the Department
Yoshkar-Ola
A. D. Dyachkov
Russian Federation
Alexey D. Dyachkov — Post-Graduate Student, Department of Radio Equipment Design and Production
Yoshkar-Ola
A. L. Romanov
Russian Federation
Alexey L. Romanov — Masterʼs Student, Department of Radio Equipment Design and Production
Yoshkar-Ola
K. A. Volkov
Russian Federation
Кirill A. Volkov — Post-Graduate Student, Department of Radio Equipment Design and Production
Yoshkar-Ola
P. G. Gabdullin
Russian Federation
Pavel G. Gabdullin — PhD, Associate Professor, Higher School of Engineering and Physics, Institute of Electronics and Telecommunications
St. Petersburg
O. E. Kvashenkina
Russian Federation
Olga Е. Kvashenkina — PhD, Associate Professor; General Manager
St. Petersburg
References
1. Rogachev A.S. Russ. Chem. Rev., 2024, no. 1(93), pp. RCR5106, DOI: 10.59761/RCR5106.
2. Rogachev A.S. Russ. Chem. Rev., 2008, no. 1(77), pp. 22–38, DOI: 10.1070/RC2008v077n01ABEH003748.
3. Baras F., Turlo V., Politano O. et al. Adv. Eng. Mater., 2018, no. 8(20), DOI: 10.1002/adem.201800091.
4. Adams D.P. Thin Solid Films, 2015, no. 2(576), pp. 98–128, DOI: 10.1016/j.tsf.2014.09.042.
5. Turlo V., Politano O., Baras F. Acta Materialia, 2016, vol. 120, рр. 189–204, DOI: 10.1063/1.4745201.
6. Weihs T.P. Met. Films for Elect., Opt. and Magn. Apps.: Struc., Proc. and Props., 2014, рр. 160–243, DOI: 10.1533/9780857096296.1.160.
7. Xanthopoulou G. Intern. J. Self-Propag. High-Temp. Synth., 2011, no. 4(20), pp. 269–272, DOI: 10.3103/S1061386211040133.
8. Kovalev D.Yu., Ponomarev V.I. Intern. J. Self-Propag. High-Temp. Synth., 2019, no. 2(28), pp. 114–123, DOI: 10.3103/S1061386219020079.
9. Shashin D.E., Sushentsov N.I. Herald of the Bauman Moscow State Tech. Univ. Series Instr. Engin., 2019, no. 6(129), pp. 99–109, DOI: 10.18698/0236-3933-2019-6-99-109.
10. Shashin D.E., Stepanov S.A., Sushentsov N.I. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems, 2017, no. 3(35), pp. 69–77, DOI: 10.15350/2306-2819.2017.3.69. (in Russ.)
11. Shashin D.E., Sushentsov N.I. J. Phys.: Conf. Ser., 2021, no. 1(2059), DOI: 10.1088/1742-6596/2059/1/012022.
12. Shashin D.E., Sushentsov N.I., Dyachkov A.D. et al. Vakuumnaya tekhnika i tekhnologiya (Vacuum Engineering and Technology), Conference, St. Petersburg, July 20–22, 2023, рр. 180–184. (in Russ.)
13. Khina B.B., Babyuk V.E., Gabdullin P.G. et al. XII Mezhdunarodnoye Kurnakovskoye soveshchaniye po fiziko-khimicheskomu analizu (XII International Kurnakov Conference on Physicochemical Analysis), St. Petersburg, 2022, рр. 78–80. (in Russ.)
14. Kvashenkina O.E., Udovenko S.A., Osipov V.S. et al. J. Phys.: Conf. Ser., 2020, vol. 1695, DOI: 10.1088/1742-6596/1695/1/012181.
15. Kvashenkina O.E., Eidelman E.D., Osipov V.S., Gabdullin P.G., Khina B.B. Technical Physics, 2020, no. 7(90), pp. 1144–1149.
16. Kvashenkina O.E., Gabdullin P.G., Osipov V.S. J. Phys.: Conf. Ser., 2019, vol. 1236, DOI: 10.1088/1742-6596/1236/1/012023.
17. Kvashenkina O.E., Gabdullin P.G., Arkhipov A.V. 2018 IEEE Intern. Conf. on Elect. Engineering and Photonics, IEEE, 2018, рр. 202–206, DOI: 10.1109/EExPolytech.2018.8564437.
18. Shashin D.E., Sushentsov N.I., Stepanov S.A. J. Phys.: Conf. Ser., 2019, vol. 1313, DOI: 10.1088/1742-6596/1313/1/012049.
19. Belyanin A.F., Borisov V.V., Sushentsov N.I. et al. Nanotechnology: development, application — XXI century, 2017, no. 1(9), pp. 4–11. (in Russ.)
20. Shashin D.E., Dyachkov A.D. Herald of the Bauman Moscow State Tech. Univ. Series Instr. Engin., 2024, no. 3(148), pp. 75–90. (in Russ.)
Review
For citations:
Shashin D.E., Sushentsov N.I., Dyachkov A.D., Romanov A.L., Volkov K.A., Gabdullin P.G., Kvashenkina O.E. Creation of thin-film multilayer structures by magnetron sputtering and their elemental analysis. Journal of Instrument Engineering. 2025;68(5):417-426. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-5-417-426