Preview

Journal of Instrument Engineering

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Formation of ensembles of quasi-orthogonal code sequences with high structural secrecy

https://doi.org/10.17586/0021-3454-2025-68-5-388-396

Abstract

One of the possible directions of increasing the noise immunity of systems using the direct sequence method for spectrum spreading is investigated, namely, a change in the paradigm that assumes that code sequences should be binary and symmetric, in favor of non-binary and asymmetric sequences. An approach to the formation of ensembles of quasi-orthogonal code sequences with high structural secrecy is presented. The specified characteristics are achieved through the analysis of known Gordon — Mills — Welch (GMW) code sequences with good correlation properties and high structural secrecy based on the theory of quasi-orthogonal matrices. These sequences are the basis for constructing cyclic Mersenne matrices with elements {1, –b}. The prototype, the GMW sequence, is modified by replacing the element “0” with the element “–b”, which is calculated in accordance with the theory of quasi-orthogonal matrices. Autocorrelation and intercorrelation functions are calculated for the resulting ensemble. It is shown that quasi-orthogonality of the sequence ensemble being formed is achieved, and at the same time the correlation properties are not worsened in comparison with the prototype. The obtained results have both independent significance and can be a component of the algorithms for generating GMV sequences.

About the Authors

E. К. Grigoriev
St. Petersburg State University of Aerospace Instrumentation
Russian Federation

Eugeny K. Grigoriev — Department of Computer Systems and Networks; Senior Lecture

St. Petersburg



A. М. Sergeev
St. Petersburg State University of Aerospace Instrumentation
Russian Federation

Alexander M. Sergeev — PhD, Department of Computer Systems and Networks

St. Petersburg



References

1. Dmitriev E.M., Rogozhnikov E.V., Movchan A.K., Muxamadiev S.M., Kryukov Ya.V., Duplishheva N.V. T-Comm – Telecommunications and their Application in Transport Industry, 2020, no. 10(14), pp. 45–52, DOI: 10.36724/2072-8735-2020-14-10-45-52. (in Russ.)

2. Kim D., Yoon D. IEEE Transactions on Information Forensics and Security, 2023, vol. 18, рр. 2292–2302, DOI: 10.1109/TIFS.2023.3265345.

3. Kukunin D.S., Berezkin A.A., Kirichek R.V., Eliseeva K. A. Electrosvyaz, 2023, no. 1, pp. 26–35, DOI: 10.34832/ELSV2023.38.1.003. (in Russ.)

4. Starodubtsev V.G., Podolina E.Yu., Keloglyan A.X. Journal of Instrument Engineering, 2022, no. 1(65), pp. 28–35, DOI: 10.17586/0021-3454-2022-65-1-28-35. (in Russ.)

5. Varakin L.E. Sistemy svyazi s shumopodobnymi signalami (Communication Systems with Noise-like Signals), Мoscow, 1985, 384 р. (in Russ.)

6. Ahmed N., Rao K.R. Orthogonal Transforms for Digital Signal Processing, Springer Berlin Heidelberg, 1975.

7. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge Univ., Press, 2005, 438 p.

8. Barker R.H. Communication Theory, Academic Press, London, 1953, рр. 273–287.

9. Sergeev M.B., Nenashev V.А., Sergeev А.М. Information and Control Systems, 2019. no. 3(100), pp. 71–81. (in Russ.)

10. Kukunin D.S., Berezkin A.A., Kirichek R.V. Infokommunikacionnye Tehnologii, 2022, no. 2(20), pp. 42–50, DOI: 10.18469/ikt.2022.20.2.05. (in Russ.)

11. Grigoriev Е.К. Proceedings of Telecommunication Universities, 2022, no. 2(8), pp. 83–90, DOI: 10.31854/1813-324X2022-8-2-83-90. (in Russ.)

12. Starodubtsev V.G., Chetverikov E.A. Journal of Instrument Engineering, 2023, no. 10(66), pp. 807–817, DOI: 10.17586/0021-3454-2023-66-10-807-817. (in Russ.)

13. Vladimirov S.S. Electrosvyaz, 2020, no. 1, pp. 61–66, DOI: 10.34832/ELSV.2020.2.1.009. (in Russ.)

14. Manaenko S.S., Dvornikov S.V., Pshenichnikov A.V. Informatics and Automation, 2022, no. 1(21), pp. 68–94, DOI: 10.15622/ia.2022.21.3. (in Russ.)

15. Mao Z., Huabing W., Dangli Z., Xingbo J. Electronics, 2024, no. 13(13), pp. 2648, DOI: 10.3390/electronics13132648.

16. Zhuk A.P., Studenikin A.V., Makarov I.V., Besedin A.A. Telecommunications, 2024, no. 3, pp. 13–21. (in Russ.)

17. Yudachev S.S., Kalmy`kov V.V. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2012, no. 1, pp. 1–18. (in Russ.)

18. Gordon B., Mill W.H., Welch L.R. Canadian J. Math., 1962, vol. 14, рр. 614–625.

19. Scholtz R.A., Welch L.R. IEEE Trans. Inform. Theory, 1984, no. 3(30), pp. 548–553.

20. Krengel` E.I. Means of Communication Equipment, 1979, no. 3, pp. 31–34. (in Russ.)

21. Starodubtsev V.G. Journal of Instrument Engineering, 2012, no. 7(55), pp. 5–9. (in Russ.)

22. Vladimirov S.S., Kognoviczkij O.S., Starodubtsev V.G. Proceedings of Telecommunication Universities, 2019, no. 4(5), pp. 16–27, DOI:10.31854/1813-324X-2019-5-4-16-27.

23. Leuhin A.N. Matematicheskie metody raspoznavaniya obrazov, 2009, no. 1(14), pp. 395–398. (in Russ.)

24. Nenashev V.A., Grigoriev E.K., Sergeev A.M., Samoxina E.V. Electrosvyaz, 2020, no. 10, pp. 58–61. (in Russ.)

25. Sergeev А.М., Blaunstein N.S. Information and Control Systems, 2017, no. 6(91), pp. 2–8, DOI: 10.15217/issn1684-8853.2017.6.2. (in Russ.)

26. Balonin N.А., Sergeev М.B. Spetsial'nyye matritsy: psevdoobratnyye, ortogonal'nyye, adamarovy i kritskiye (Special Matrices. Pseudoinverse, Orthogonal, Hadamard and Cretean), St. Petersburg, 2019, 196 р. (in Russ.)

27. Jennifer S., Yamada M. Hadamard Matrices: Constructions using number theory and linear algebra, Wiley, 2020, 384 p.

28. Balonin N.А., Sergeev М.B. Information and Control Systems, 2018, no. 6(97), pp. 2–13, DOI: 10.31799/1684-8853-2018-6-2-13. (in Russ.)

29. Balonin N.А., Sergeev М.B. Information and Control Systems, 2019, no. 1(98), pp. 2–10, DOI: 10.31799/1684-8853-2019-1-2-10. (in Russ.)

30. Sergeev А.М. Journal of Instrument Engineering, 2021, no. 2(64), pp. 90–96, DOI: 10.17586/0021-3454-2021-64-2-90-96. (in Russ.)


Review

For citations:


Grigoriev E.К., Sergeev A.М. Formation of ensembles of quasi-orthogonal code sequences with high structural secrecy. Journal of Instrument Engineering. 2025;68(5):388-396. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-5-388-396

Views: 24


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)