

Linear complexity of non-binary Gordon – Mills – Welch sequences in arbitrary finite fields
https://doi.org/10.17586/0021-3454-2025-68-5-380-387
Abstract
The relations for determining the equivalent linear complexity (ELC) lS of non-binary Gordon — Mills — Welch sequences (GMWS) formed in arbitrary extended finite fields GF[(pm)n] are presented. The values of the ELC of the GMWS for fields with a base p = 3 -17 are obtained, taking into account the parameter Мn(rp) equal to the number of summable sequences during the formation of the GMWS. It is shown that the parameter Мn(rp) depends exclusively on the degree n of the field expansion and the values of the digits of the p-ary representation of the number rp, which is mutually simple with the order of the multiplicative group of the subfield GF(pm).
About the Authors
V. G. StarodubtsevRussian Federation
Victor G. Starodubtsev — PhD., Associate Professor, Department of Technologies and Automation of Processing and Analysis of Spacecraft Information; Senior Lecturer
St. Petersburg
E. B. Samoylov
Russian Federation
Evgeny B. Samoylov — PhD, Associate Professor, Department of Technologies and Automation of Processing and Analysis of Spacecraft Information
St. Petersburg
References
1. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
2. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge University Press, 2005, 438 p.
3. Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloye, nastoyashcheye, budushcheye (CDMA: Past, Present, Future), Moscow, 2003, 608 р. (in Russ.)
4. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
5. Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.
6. Liang H., Chen W., Luo J., Tang Y. Advances in Mathematics of Communications, 2017, vol. 11, рр. 671.
7. Wang Q. IEEE Trans. Inform. Theory, 2010, no. 8(56), pp. 4046.
8. Shi X., Zhu X., Huang X., Yue Q. IEEE Communications Letters, 2019, no. 7(23), pp. 1132.
9. Cho C.M., Kim J.Y., No J.S. IEICE Trans. on Com., 2015, no. 7(E98), pp. 1268.
10. No J.S. IEEE Trans. Inform. Theory, 1996, no. 1(42), pp. 260–262.
11. Chung H.B., No J.S. IEEE Trans. Inform. Theory, 1999, no. 6(45), pp. 2060.
12. Krengel E.I. Communication Equipment, TRS series, 1979, no. 3, pp. 17–30. (in Russ.)
13. Meshkovsky K.A., Krengel E.I. Radioengineering, 1998, no. 5, pp. 25–28. (in Russ.)
14. Starodubtsev V.G. Journal of Communications Technology and Electronics, 2023, no. 2(67), pр. 676–682. (in Russ).
15. Starodubtsev V.G. Journal of Communications Technology and Electronics, 2023, no. 8(66), p. 810–814. (in Russ).
16. Certificate on the state registration of the computer programs 2021616735, Programma vychisleniya indeksov detsimatsii dlya summiruyemykh posledovatel'nostey pri formirovanii nedvoichnykh posledovatel'nostey GordonaMillsa-Velcha (A Program for Calculating Decimation Indices for Summable Sequences when Forming Non-binary Gordon-Mills-Welch Sequences), V.G. Starodubtsev, V.V. Tkachenko, A.S. Leonov, E.Yu. Podolina, A.Kh. Keloglyan, 26.04.2021. (in Russ.)
Review
For citations:
Starodubtsev V.G., Samoylov E.B. Linear complexity of non-binary Gordon – Mills – Welch sequences in arbitrary finite fields. Journal of Instrument Engineering. 2025;68(5):380-387. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-5-380-387