

Study of Quasi-static Vibrations of a Piezoelectric Disk Using Finite Element Modeling and Laser Interferometry
https://doi.org/10.17586/0021-3454-2025-68-4-333-341
Abstract
Quasi-static oscillations of a piezoelectric disk with several electrodes are studied in order to determine their optimal configuration during operation of the piezoelectric element as part of a device. The first criterion of optimality is the value of axial deformations of the geometric center of the piezoelectric element surface. The second criterion is the value of the response voltage taken from the feedback electrode of the piezoelectric element. A finite element model of the piezoelectric transducer is built in the Ansys Workbench software product. The values of the response voltage and the amplitude of axial deformations are calculated for various electrode configurations. Experimental studies of the response voltage at various frequencies of the transducer are carried out: at a resonance frequency of 1200 Hz and far from the resonance frequency at 300 Hz. Using laser interferometry methods, the values of axial deformation are experimentally studied at a frequency of 400 Hz. The results of modeling and experimental studies show similar trends. The discrepancy between the simulation results and the experimental data is due to the discrepancy between the actual values of the piezomodules and the manufacturer’s reference data. The results obtained allow us to formulate recommendations on the location and purpose of the electrodes of disk piezoelectric transducers.
About the Authors
A. M. BrazhnikovRussian Federation
Artem M. Brazhnikov — Post-Graduate Student; Department of Radio Engineering Devices; Engineer
Samara
S. Yu. Ganigin
Russian Federation
Sergei Yu. Ganigin — Dr. Sci., Professor; Department of Radio Engineering Devices; Head of the Department
Samara
References
1. Ivina N.F. Acoustical physics, 2001, no. 6(47), pp. 417–420.
2. Krushynska A. et al. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, no. 10(58), pp. 2222–2238.
3. Kim D.J., Oh S.H., and Kim J.O. Transactions of the Korean Society for Noise and Vibration Engineering, 2015, no. January(25), pp. 13–23. DOI:10.5050/KSNVE.2015.25.1.013
4. Yu-Hsi Huang, Journal of the Chinese Institute of Engineers, 2013, vol. 36, рр. 842–855.
5. Pan Ch., Xiao G., Feng Z., Liao W.-H. Smart Materials and Structures, 2014, no. 12(23), DOI 10.1088/0964- 1726/23/12/125029.
6. Lin Y.-C. and Ma C.-C. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, vol. 51, рр. 937– 947.
7. Carbonari R.C., Silva E.C.N., and Nishiwaki S. Smart Materials and Structures, 2007, no. 1(16), pp. 207–220.
8. Kandaurov A.A. Polzunovsky Vestnik, 2008, no. 4, pp. 100–104. (in Russ.)
9. Deferrari H.A., Darby R.A. and Andrews F.A. The Journal of the Acoustical Society of America, 1967, no. 5(42), pp. 982–990.
10. Barbosa F.A.A., Nader G., Higuti R.T. Sba Controle & Automação Sociedade Brasileira de Automatica, 2010, Dec., рр. 577–587, DOI:10.1590/S0103-17592010000600003.
11. https://avrora-elma.ru/upload/iblock/50b/wjjf2umpnkgxsurrki9zeal7ox2coe6z.pdf. (in Russ.)
12. Lin Hsien-Yang, Huang Jin H., Ma Chien-Ching, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, no. 8(49), pp. 1139–1149, DOI: 10.1109/TUFFC.2002.1026026.
13. Colcheroa L., Colcheroa J., Go´mez Herreroa J., Prietob E., Baro A., Huanga W.H. Materials Characterization, 2002, no. 2-3(48), pp. 133–140, DOI:10.1016/S1044-5803(02)00191-2.
14. Libbrecht K.G., Black E.D. American Journal of Physics, 2015, no. 5(83), pp. 409–417, DOI: 10.1119/1.4901972.
15. Pisani M. Measurement Science and Technology, 2009, no. 8(20), pp. 084008, DOI:10.1088/0957-0233/20/8/084008.
16. Ma C.C., Huang C.H. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, no. 1(48), pp. 142–153, DOI:10.1109/58.895923.
17. Kiryanov V.P., Koronkevich V.P. Avtometriya, 1998, no. 6, pp. 65–84. (in Russ.)
Review
For citations:
Brazhnikov A.M., Ganigin S.Yu. Study of Quasi-static Vibrations of a Piezoelectric Disk Using Finite Element Modeling and Laser Interferometry. Journal of Instrument Engineering. 2025;68(4):333-341. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-4-333-341