

Study of Properties of Weight-based Two-module Sum Codes in Concurrent Error-Detection Circuits Based on Boolean Signal Correction
https://doi.org/10.17586/0021-3454-2025-68-4-279-295
Abstract
The features of the application of two-module sum codes in the synthesis of self-checking digital devices are considered. It is shown that the use of two-module sum codes significantly expands the number of ways to synthesize concurrent error-detection circuit both according to the traditional structure with the addition of data vectors with test ones, and according to an alternative one based on the principle of Boolean signals correction. Previously unknown characteristics of error detection by two-module sum codes in the residue ring modulo M = 4 with a “half division” of data symbols into two subsets have been established. It is shown that the number of potential undetectable errors in the codewords of two-module sum codes is ten times greater than the number of undetectable errors that occur exclusively in the data symbols of codewords. It is advisable to use this feature in the synthesis of concurrent error-detection circuit based on the Boolean signals correction by selecting a group of outputs, the signals from which are corrected in the concurrent error-detection circuit. The rule of allocation of functionally independent groups of outputs of the diagnostic object is applied. A generalized algorithm for the synthesis of concurrent error-detection circuit based on the Boolean signal’s correction using two-module weight-based sum codes has been formed. The experiment shows that using two-module weight-based sum codes, it is possible to obtain less redundant self-checking devices than using classical approaches. The results obtained in the course of the study can be effectively used in the development of self-checking digital devices and computing systems.
About the Authors
D. V. EfanovRussian Federation
Dmitry V. Efanov — Dr. Sci., Professor; Department of Automation, Remote Control, and Communications on Railway Transport; Professor; Institute of Machinery, Materials, and Transport, Higher School of Transport; Professor
Moscow; St. Petersburg
M. V. Zueva
Russian Federation
Marina V. Zueva — Programmer-Analyst
St. Petersburg
Y. I. Yelina
Russian Federation
Yeseniya I. Yelina — Post-Graduate Student; Institute of Machinery, Materials, and Transport, Higher School of Transport
St. Petersburg
M. V. Timoshenkov
Russian Federation
Maxim V. Timoshenkov — Master’s Student; Institute of Machinery, Materials, and Transport, Higher School of Transport
St. Petersburg
References
1. Piestrak S.J. Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wrocław, Oficyna Wydawnicza Politechniki Wrocłavskiej, 1995, 111 p.
2. Fujiwara E. Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, 2006, 720 p.
3. Göessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking: Edition 1, Dordrecht: Springer Science+Business Media B.V., 2008, 184 p.
4. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy (The Self-Checked Devices and Failure-Safe Systems), Moscow, 1989, 208 р. (in Russ.)
5. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody s summirovaniyem dlya sistem tekhnicheskogo diagnostirovaniya. T. 1. Klassicheskiye kody Bergera i ikh modifikatsii (Summed Codes for Technical Diagnostic Systems. Vol. 1. Classical Berger Codes and Their Modifications), Moscow, 2020, 383 р. (in Russ.)
6. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody s summirovaniyem dlya sistem tekhnicheskogo diagnostirovaniya. T. 2. Vzveshennyye kody s summirovaniyem (Summed Codes for Technical Diagnostic Systems. Vol. 2. Weighted Codes with Summation), Moscow, 2021, 455 р. (in Russ.)
7. Efanov D., Sapozhnikov V., Sapozhnikov Vl. Proceedings of 14th IEEE East-West Design & Test Symposium (EWDTS’2016), Yerevan, Armenia, October 14–17, 2016, pp. 256–260, doi: 10.1109/EWDTS.2016.7807713.
8. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Automatic Control and Computer Sciences, 2018, no. 1(52), pp. 1–12, DOI: 10.3103/S0146411618010029.
9. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Trudy SPIIRAN (SPIIRAS Proceedings), 2020, no. 3(19), pp. 674– 713, DOI: 10.15622/sp.2020.19.3.8. (in Russ.)
10. Efanov D.V., Timoshenkov M.V., Sivachenko L.A., Leskovets I.V. Automation on transport, 2023, no. 4(9), pp. 377– 389, DOI: 10.20295/2412-9186-2023-9-04-377-389. (in Russ.)
11. Berger J.M. Information and Control, 1961, no. 1(4), pp. 68–73, DOI: 10.1016/S0019-9958(61)80037-5.
12. Blyudov A.A., Efanov D.V., Sapozhnikov V.V. Automation and Remote Control, 2014, no. 8(75), pp. 1460–1470.
13. Gessel M., Morozov A.V., Sapozhnikov V.V. & Sapozhnikov Vl.V. Automation and Remote Control, 2003, no. 1(64), pp. 153–161, DOI: https://doi.org/10.1023/A:1021884727370.
14. Goessel M., Morozov A.V., Sapozhnikov V.V. & Sapozhnikov Vl.V. Automation and Remote Control, 2005, no. 8(66), pp. 1336–1346, DOI: https://doi.org/10.1007/s10513-005-0174-2.
15. Mitra S., McCluskey E.J. Proceedings of International Test Conference, 2000, USA, Atlantic City, NJ, 03–05 October 2000, pp. 985–994, DOI: 10.1109/TEST.2000.894311.
16. Aksyonova G.P. Automation and Remote Control, 1979, no. 9, pp. 126–135. (in Russ.)
17. Dhar K. 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 10–11 July 2014, Kanyakumari, India, DOI: 10.1109/ICCICCT.2014.6992931.
18. Efanov D.V., Sapozhnikov V.V. Automation and Remote Control, 2015, no. 10, pp. 1834–1848.
19. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Journal of Instrument Engineering, 2015, no. 5(58), pp. 333–343, DOI: 10.17586/0021-3454-2015-58-5-333-343. (in Russ.)
20. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Electronic Modeling, 2021, no. 1(43), pp. 28–45, DOI: 10.15407/ emodel.43.01.028.
21. Zakrevsky A.D., Pottosin Yu.V., Cheremisinova L.D. Logicheskiye osnovy proyektirovaniya diskretnykh ustroystv (Logical Foundations of Discrete Device Design), Moscow, 2007, 592 р. (in Russ.)
22. Collection of Digital Design Benchmarks, https://ddd.fit.cvut.cz/www/prj/Benchmarks/.
23. Sentovich E.M., Singh K.J., Moon C., Savoj H., Brayton R.K., Sangiovanni-Vincentelli A. Proceedings IEEE International Conference on Computer Design: VLSI in Computers & Processors, 11–14 October 1992, Cambridge, MA, USA, pp. 328–333, DOI: 10.1109/ICCD.1992.276282.
24. Sentovich E.M., Singh K.J., Lavagno L., Moon C., Murgai R., Saldanha A., Savoj H., Stephan P.R., Brayton R.K., Sangiovanni-Vincentelli A. SIS: A System for Sequential Circuit Synthesis, Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, 4 May 1992, 45 p.
25. Efanov D.V., Elina E.I. Transport automation research, 2024, no. 1(10), pp. 74–99, DOI: 10.20296/2412-9186-2024-10-01-74-99. (in Russ.)
Review
For citations:
Efanov D.V., Zueva M.V., Yelina Y.I., Timoshenkov M.V. Study of Properties of Weight-based Two-module Sum Codes in Concurrent Error-Detection Circuits Based on Boolean Signal Correction. Journal of Instrument Engineering. 2025;68(4):279-295. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-4-279-295