Preview

Journal of Instrument Engineering

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Intelligent diagnostics of cleanroom ventilation and air conditioning systems

https://doi.org/10.17586/0021-3454-2025-68-2-168-175

Abstract

An approach to training diagnostic models of complex technical systems with multiple uncertainty of a priori information is proposed. Since it is impossible to determine the law of distribution of values  of parameters of working processes, it is proposed to use methods of nonparametric statistics. The training procedure is based on the use of topology and properties of finite-dimensional Euclidean spaces. An example of a training procedure using a computational scheme according to the Robbins-Monroe algorithm is given. A graphical interpretation of the construction of a standard of parametric failure of an element when constructing diagnostic models of equipment of the ventilation and air conditioning system of a clean room of a special facility is presented.

About the Authors

Yu. E. Tupitsin
A. F. Mozhaisky Military Space Academy
Russian Federation

Yuri E. Tupitsin - PhD, Associate Professor; Department o Life Support Systems for Ground-Based Space Infrastructure Facilities

St. Petersburg



A. S. Matyunin
A. F. Mozhaisky Military Space Academy
Russian Federation

Alexander S. Matyunin - PhD; Department of Life Support Systems for Ground-Based Space Infrastructure Facilities; Lecturer

St. Petersburg



M. V. Egorichev
A. F. Mozhaisky Military Space Academy
Russian Federation

Maxim V. Egorichev - Adjunct; Department of Life Suppor Systems for Ground-Based Space Infrastructure Facilities; Lecturer

St. Petersburg



A. A. Golub
A. F. Mozhaisky Military Space Academy
Russian Federation

Andrey A. Golub - Cadet; Department of Life Support Systems for Ground-Based Space Infrastructure Facilities

St. Petersburg



References

1. Fomin Ya. A. Raspoznavaniye obrazov. Teoriya i primeneniya (Pattern Recognition. Theory and Applications), Moscow, 2010, 368 р. (in Russ.)

2. Loban A.V. Informatsionnaya tekhnologiya raspredelennogo diagnostirovaniya kosmicheskikh apparatov (Information Technology of Distributed Diagnostics of Spacecraft), Moscow, Berlin, 2015, 146 р. (in Russ.)

3. Senchenkov V.I. Modeli, metody i algoritmy analiza tekhnicheskogo sostoyaniya (Models, Methods and Algorithms for Technical Condition Analysis), Saarbrücken, 2013, 377 р. (in Russ.)

4. Chunhui Z., Furong G. Chemical Engineering Science, 2015, vol. 138, рр. 531–543.

5. Lu G., Zhou Y., Lu C., Li X. Mechanical Systems and Signal Processing, 2017, vol. 83, рр. 533–548.

6. Budko P.A., Vinogradenko A.M., Litvinov A.I. Mechatronics, automation, control, 2014, no. 9, pp. 53–58. (in Russ.)

7. Liu W.Y., Gao Q.W., Ye G. et al. Measurement, 2015, vol. 74, рр. 70–77.

8. Skliros C., Esperon M.M., Fakhre A., Jennions I.K. Diagnostyka, 2019, vol. 20(1), рр. 3–21.

9. Shi P., Liang K., Han D., Zhang Yi. Journal of Vibroengineering, 2017, vol. 19(8), рр. 5932–5946.

10. Senchenkov V.I., Matyunin A.S. Pribory i sistemy. Upravleniye, kontrol’, diagnostika, 2020, no. 8, pp. 18–26. (in Russ.)


Review

For citations:


Tupitsin Yu.E., Matyunin A.S., Egorichev M.V., Golub A.A. Intelligent diagnostics of cleanroom ventilation and air conditioning systems. Journal of Instrument Engineering. 2025;68(2):168-175. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-2-168-175

Views: 23


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)