

Features of practical application of the method of regressor dynamic expansion and mixing with desired indicators of parameters estimation quality
https://doi.org/10.17586/0021-3454-2025-68-1-23-35
Abstract
The features of the dynamic regressor expansion and mixing method and its modifications used in estimating the parameters of a linear regression equation for systems with different properties are analyzed. The objectives of the study are to identify key aspects of the practical application of the dynamic regressor expansion and mixing method, compare the patterns of application of its modifications, and select the most effective solutions. Numerical modeling is used to compare various modifications of the original algorithm aimed at overcoming the following problems: a relatively large number of adjustable parameters, weak excitation of the regressor, the need to select gradient descent coefficients to ensure convergence for each parameter in a comparable time, and the presence of outliers in the estimate for piecewise constant parameters. It is shown that the use of expansion schemes allows to reduce the number of adjustable parameters, adding a regularizing matrix to the expanded regressor provides an estimate for cases with weak excitation, normalization of the excitation of the regressor ensures the agreement of the convergence time of the estimate for different degrees of excitation of the regressor, and an interval integral filter with resetting is effective against outliers in the parameter estimate in the case of their piecewise constant assignment.
Keywords
About the Authors
N. V. MikhalkovRussian Federation
Nikita V. Mikhalkov — Post-Graduate Student; Faculty of Control Systems and Robotics
St. Petersburg
A. A. Pyrkin
Russian Federation
Anton A. Pyrkin — Dr. Sci., Professor; Faculty of Control Systems and Robotics; Dean of the Faculty
St. Petersburg
References
1. Ioannou P.A., and Jing Sun, Robust adaptive control. Upper Saddle River, NJ, PTR Prentice-Hall, 1996.
2. Ljung L. System Identification — Theory for the User, NJ, PTR Prentice Hall, 1999.
3. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. IEEE Transactions on Automatic Control, 2016, no. 7(62), pp. 3546–3550.
4. Bowen Y., Ortega R. IEEE Transactions on Automatic Control, 2022, no. 2(68), pp. 1253–1258.
5. Korotina M., Aranovskiy S., Ushirobira R., Vedyakov A. European Control Conference (ECC), St. Petersburg, May 12–15, 2020, рр. 53–58. DOI: 10.23919/ECC51009.2020.9143808.
6. Wang L., Ortega R., Bobtsov A., Romero J.G., Yi B. International Journal of Control, 2023, рр. 1–17, DOI: 10.1080/00207179.2023.2246595.
7. Glushchenko A.I., Petrov V.A., Lastochkin K.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, no. 4(21), pp. 449–456. (in Russ.)
8. Glushchenko A.I., Lastochkin K.A. Automation and Remote Control, 2023, no. 1(84), pp. 14–41.
9. Aranovskiy S., Ushirobira R., Efimov D. 62nd IEEE Conference on Decision and Control, 2023, рр. 2515–2520.
10. Ovcharov A., Vedyakov A., Kazak S., Pyrkin A. International Journal of Adaptive Control and Signal Processing, 2023, no. 6(36), pp. 1305–1325.
11. Palmisano M., Reichhartinger M. IFAC-PapersOnLine, 2020, no. 2(53), pp. 5105–5110.
12. Hu Y., Wu J., Zeng C. IEEE Access, 2020, vol. 8, рp. 8268–8274.
13. Sastry S., Bodson M. Adaptive Control—Stability, Convergence, and Robustness, Englewood Cliffs, N.J.: Prentice Hall, 1989.
14. Schatz S. P., Yucelen T., Gruenwald B. C., Holzapfel F. AIAA Guidance, Navigation, and Control Conference, 2015, p. 0608.
15. Glushchenko A.I., Lastochkin K.A., Petrov V.A. Automation and Remote Control, 2022, no. 1(83), pp. 17–31.
16. Ortega R., Aranovskiy S., Pyrkin A., Astolfi A., Bobtsov A. IEEE Transactions on Automatic Control, 2020, no. 5(66), pp. 2265–2272.
17. Ortega R., Gerasimov D.N., Barabanov N.E., Nikiforov V.O. Automatica, 2019, vol. 110, p. 108589.
Review
For citations:
Mikhalkov N.V., Pyrkin A.A. Features of practical application of the method of regressor dynamic expansion and mixing with desired indicators of parameters estimation quality. Journal of Instrument Engineering. 2025;68(1):23-35. (In Russ.) https://doi.org/10.17586/0021-3454-2025-68-1-23-35