

Algorithm of long baseline navigation of an autonomous underwater vehicle in the absence of a priori data on its location under conditions of sparse beacon placement
https://doi.org/10.17586/0021-3454-2024-67-12-1052-1064
Abstract
A recursive algorithm is developed to determine coordinates of an autonomous underwater vehicle (AUV) using measurements of ranges to acoustic beacons, taken at different times, together with relative lag and course indicator data. It is assumed that a priori coordinates of the AUV are unknown, and the unambiguous navigation solution cannot be obtained from one-shot measurements due to a sparse beacon location. The algorithm is started upon the first receipt of simultaneous measurements from two beacons. Joint processing of current and saved measurements before the algorithm launch is provided using the Kalman filter. The ambiguity of the AUV location is resolved according to the ratio of a posteriori probabilities of alternatives. The results of modeling and processing of field data, as well as performance assessments, confirming the efficiency of the developed algorithm are presented.
Keywords
About the Authors
D. A. KoshaevRussian Federation
Dmitrу A. Koshaev - Dr. Sci.; Leading Researcher
St. Petersburg
V. V. Bogomolov
Russian Federation
Vladimir V. Bogomolov - Head of a Sector
St. Petersburg
References
1. Paull L., Saeedi S., Seto M., Li H. AUV Navigation and Localization: A Review, IEEE Journal of oceanic engineering, 2014, vol. 39, no. 1, pp. 131–149, DOI 10.1109/JOE.2013.2278891.
2. Kebkal K.G., Mashoshin A.I. Giroskopiya i Navigatsiya, 2016, no. 3, pp. 115–130, DOI 10.17285/0869-7035.2016.24.3.115-130.
3. Matvienko Yu.V., Inzartsev A.V., Kiselev L.V., Shcherbatyuk A.F. Izvestiya SFEDU. Engineering Sciences, 2016, no. 1(174), pp. 123–141.(in Russ.)
4. Stepanov O.A. Metody obrabotki navigatsionnoy izmeritel’noy informatsii (Methods of Processing Navigational Measurement Information), St. Petersburg, 2017, 196 р.
5. Sigiel N. Scientific Journal of Polish Naval Academy, 2019, vol. 1, pp. 31–43, DOI 10.2478/sjpna-2019-0003.
6. González-García J., Gómez-Espinosa A., Cuan-Urquizo E., García-Valdovinos L.G., Salgado-Jiménez T. and Cabello J.A.E. Applied Science, 2020, no. 4(10), pp. 1256, DOI 10.3390/app10041256.
7. Koshaev D.A. Giroskopiya i Navigatsiya, 2020, no. 2(28), pp. 109–130. (in Russ.)
8. Shcherbatyuk D.A. Underwater Investigations and Robotics, 2021, no. 4(38), pp. 50–57, DOI: 10.37102/1992-4429_2021_38_04_05. (in Russ.)
9. Koshaev D.A. Gyroscopy and Navigation, 2022, no. 4(13), pp. 262–275.
10. Mashoshin A.I., Pashkevich I.V. Giroskopiya i Navigatsiya, 2023, no. 1(31), pp. 103–119. (in Russ.)
11. Gruzlikov A.M., Karaulov V.G., Mukhin D.A., Shalaev N.A. Izvestiya SFEDU. Engineering Sciences, 2023, no. 1, pp. 265–274, DOI 10.18522/2311-3103-2023-1-265-274.
12. Pashkevich I.V., Martynova L.A. Perspektivnyye sistemy i zadachi upravleniya (Advanced Systems and Control Problems), Collection of Materials of the XVIII All-Russian Scientific and Practical Conference, 2023, рр. 334–343. (in Russ.)
13. Dmitriev V.I., Rassukovany L.S. Navigatsiya i lotsiya, navigatsionnaya gidrometeorologiya, elektronnaya kartografiya (Navigation and Pilotage, Navigational Hydrometeorology, Electronic Cartography), Moscow, 2016, 457 р. (in Russ.)
14. Bogomolov V.V. Materialy XXIV konferentsii molodykh uchenykh s mezhdunarodnym uchastiyem (Proc. of the XXIII Conf. of Young Scientists with International Participation), St. Petersburg, 2021, рр. 223–227. (in Russ.)
15. Meditch J.S. Stochastic optimal linear estimation and control, NY, Mc. Graw Hill., 1969, 394 p.
16. Bogomolov V.V. Materialy XXIV konferentsii molodykh uchenykh s mezhdunarodnym uchastiyem (Proc. of the XXIV Conf. of Young Scientists with International Participation), St. Petersburg, 2022, рр. 120–123. (in Russ.)
17. Bogomolov V.V., Koshaev D.A. Materialy XXXIII konferentsii pamyati vydayushchegosya konstruktora giroskopicheskikh priborov N.N. Ostryakova (Proc. of the XXXIII Conf. in Memory of the Outstanding Designer of Gyroscopic Devices N.N. Ostryakov), St. Petersburg, 2022, рр. 66–69. (in Russ.)
18. Bogomolov V.V. Underwater Investigations and Robotics, 2024, no. 2(48), pp. 58–67, DOI: 10.37102/1992-4429_2024_48_02_07. (in Russ.)
19. Bogomolov V. Proc. of the 2023 International Conference on Ocean Studies (ICOS), Vladivostok, 2023, pp. 037–040, DOI 10.1109/ICOS60708.2023.10425637.
20. Koshaev D.A. Automation and Remote Control, 2016, no. 6(77), pp. 1009–1030.
21. Stepanov O.A., Isaev A.M. Giroskopiya i Navigatsiya, 2023, no. 3(31), pp. 48–65. (in Russ.)
Review
For citations:
Koshaev D.A., Bogomolov V.V. Algorithm of long baseline navigation of an autonomous underwater vehicle in the absence of a priori data on its location under conditions of sparse beacon placement. Journal of Instrument Engineering. 2024;67(12):1052-1064. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-12-1052-1064