

Accuracy of estimating an orbiting object center of mass motion parameters on the base of star-spacecraft angle measuring results
https://doi.org/10.17586/0021-3454-2024-67-12-1019-1029
Abstract
Using mathematical modeling, the accuracy of estimating motion parameters of the center of mass of a nonoperated spacecraft located in the vicinity of established standing point of the geostationary orbit, is investigated. The simulation is performed on the basis of measurements of the orbital object angular position relative to the stars, carried out with the use of on-board optoelectronic devices of a service space robot. The estimation of the motion parameters of the non–operated spacecraft center of mass is obtained using the recurrent least squares method when processing measurements of the star-spacecraft angles performed by the space robot optoelectronic devices. It is established that the problem of determining the parameters of spacecraft motion can be solved with errors of less than ± 0.6 m in coordinates and ± 0.2 mm/s in the velocity vector components. To achieve these characteristics, the on–board control system of the space robot must contain optoelectronic equipment that provides a standard error of measuring the starspacecraft angles, not exceeding 1”.
About the Authors
A. D. GolyakovRussian Federation
Alexeу D. Golyakov - Dr. Sci., Professor, Department of Autonomous Control Systems; Professor
St. Petersburg
A. A. Sasunkevich
Russian Federation
Aleksandеr A. Sasunkevich - PhD, Department of Autonomous Control Systems; Doctoral student
St. Petersburg
References
1. Gradovtsev A.A., Kondratyev A.S., Lopota A.V. St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunications and Control Systems, 2013, no. 1, pp. 111–118. (in Russ.)
2. Dalyaev I.Yu., Kuznetsova E.M., Shardyko I.V. Robotics and Technical Cybernetics, 2015, no. 3, pp. 27–31. (in Russ.)
3. Silantiev S.I., Fominov V.I., Korolev S.Yu. Vozdushno-kosmicheskaya sfera, 2016, no. 2(87), pp. 118–123. (in Russ.)
4. Belonozhko P.P. Vozdushno-kosmicheskaya sfera, 2019, no. 2(99), pp. 85–95. (in Russ.)
5. Sasunkevich A.A. Journal of Instrument Engineering, 2023, no. 4(66), pp. 297–305, DOI: 10.17586/0021-3454-2023-66-4-297-305. (in Russ.)
6. Somov E.I., Butyrin S.A., Somov S.E. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2021, no. 2(23), pp. 75–83. (in Russ.)
7. Somov E.I., Butyrin S.A., Somov S.E., Somovа T.E. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2022, no. 4(24), pp. 155–160. (in Russ.)
8. Butyrin S.A., Somov E.I., Somov S.E., Somovа T.E. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2022, no. 4(24), pp. 96–104. (in Russ.)
9. Konin V., Shyshkov F. Radioelectronics and Communications Systems, 2016, no. 12(59), pp. 562–566.
10. Kruzhkov D.M., Kim R.V. Trudy MAI, 2013, no. 68.
11. Kalabin P.V., Sasunkevich A.A., Fominov I.V. Proceedings of the Mozhaisky Military Space Academy, 2019, no. 666, pp. 208–217. (in Russ.)
12. Elyasberg P.E. Vvedeniye v teoriyu poleta iskusstvennogo sputnika Zemli (Introduction to the Theory of Flight of an Artificial Satellite of the Earth), Moscow, 1965, 540 р. (in Russ.)
13. Anshakov G.P., Golyakov A.D., Petrishchev V.F., Fursov V.A. Avtonomnaya navigatsiya kosmicheskikh apparatov (Autonomous Navigation of Spacecraft), Samara, 2011, 486 р. (in Russ.)
14. Golyakov A.D., Ananenko V.M., Fominov V.I. Sistemy navigatsii kosmicheskikh apparatov (Spacecraft Navigation Systems), St. Petersburg, 2017, 269 р. (in Russ.)
15. Fedoseev V.I., Karelin A.Yu., Korotkova E.L. Opticheskii Zhurnal, 1995, no. 9, pp. 26–31. (in Russ.)
16. Fedoseev V.I., Kolosov M.P. Optiko-elektronnyye pribory oriyentatsii i navigatsii kosmicheskikh apparatov (Optical-Electronic Devices for Orientation and Navigation of Spacecraft), Moscow, 2007, 248 р. (in Russ.)
17. Bessonov R.V., Belinskaya E.V., Brysin N.N., Voronkov S.V., Kurkina A.N., Forsh A.A. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, no. 6(15), pp. 9–20. (in Russ.)
18. Elyasberg P.E. Opredeleniye dvizheniya po rezul’tatam izmereniy (Determination of Motion Based on Measurement Results), Moscow, 1976, 416 р. (in Russ.)
19. Mikhailov N.V. Avtonomnaya navigatsiya kosmicheskikh apparatov pri pomoshchi sputnikovykh radionavigatsionnykh sistem (Autonomous Navigation of Spacecraft Using Satellite Radio Navigation Systems), St. Petersburg, 2014, 362 р. (in Russ.)
20. Porfiryev L.F., Smirnov V.V., Kuznetsov V.I. Analiticheskiye otsenki tochnosti avtonomnykh metodov opredeleniya orbit (Analytical Assessments of the Accuracy of Autonomous Methods for Determining Orbits), Moscow, 1987, 279 р. (in Russ.)
Review
For citations:
Golyakov A.D., Sasunkevich A.A. Accuracy of estimating an orbiting object center of mass motion parameters on the base of star-spacecraft angle measuring results. Journal of Instrument Engineering. 2024;67(12):1019-1029. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-12-1019-1029