Service-oriented architectural model of discrete production system
https://doi.org/10.17586/0021-3454-2023-66-1-43-55
Abstract
The problems and development trends of the project design process are considered. A review of modern requirements to production systems design is presented. The stages of development of models of organization of modern production systems are analyzed, and the need to develop new architectural models of such systems using technologies of industrial cyber-physical systems is indicated. An architectural model of a service-oriented production system based on the RAMI reference model is proposed. An example of implementation of the proposed architectural model based on a pilot factory for the production of magnetic composite materials is given.
About the Authors
O. A. AbyshevRussian Federation
Oman A. Abyshev - Post-Graduate Student; Faculty of Secure Informgation Technologies
St. Petersburg
E. I. Yablochnikov
Russian Federation
Evgeny I. Yablochnikov - PhD, Associate Professor
St. Petersburg
D. A. Zakoldaev
Russian Federation
Danil A. Zakoldaev - Ph.D., Associated Professor; Faculty of Secure Information Technologies; Dean of the Faculty
St. Petersburg
References
1. OECD Digital Economy Outlook 2017, Paris, OECD Publishing, 2017, DOI: 10.1787/9789264276284-en.
2. Monostori L., Kádár B., Bauernhansl T., Kondoh S., Kumara S., Reinhart G., Sauer O., Schuh G., Sihn W., Ueda K. CIRP Annals, 2016, no. 2(65), pp. 621–641, https://doi.org/10.1016/j.cirp.2016.06.005.
3. http://assets.fea.ru/uploads/fea/news/2017/11_november/17/tsifrovoe_proizvodstvo_112017.pdf. (in Russ.)
4. Zilberburg L.I., Molochnik V.I., Yablochnikov E.I. Informatsionnyye tekhnologii v proyektirovanii i proizvodstve (Information Technology in Design and Production), St. Petersburg, 2008, 304 р. (in Russ.)
5. Yablochnikov E.I., Chukichev A.V., Timofeeva O.S., Abyshev O.A., Abaev G.E. and Colombo A.W. Philosophical Transactions of the Royal Society A, 2021, no. 379(2207), pp. 20200370.
6. Demkovich N.A., Abaev G.E., Yablochnikov E.I. Ritm mashinostroyeniya, 2019, https://beepitron.com/files/content/abaev_demkovich_yablochnikov_-_mnogourovnevoe_modelirovanie_cifrovyh_proizvodstv.pdf. (in Russ.)
7. Chukichev A.V., Timofeeva O.S., Yablochnikov E.I. Modern engineering. Science and education, 2020, no. 9, pp. 43–54. (in Russ.)
8. Schumacher A., Erol S., Sihn W. Procedia CIRP, 2016, vol. 52, рр. 161–166.
9. Novikova I.V., Ravino A.V. Proceedings of BSTU, 2022, no. 1(256), https://cyberleninka.ru/article/n/opredeleniestranovyh-osobennostey-tsifrovizatsii-v-gosudarstvah-eaes. (in Russ.)
10. Radziwon A., Bilberg A., Bogers M., Madsen E.S. Procedia Engineering, 2014, vol. 69, рр. 1184–1190.
11. Umsetzung und Entwicklung von Industrie 4.0. Grundlagen, Modellierung und Fallstudien, Springer, 2016.
12. Manzei C., Schleupner L., Heinze R. Industrie 4.0 im internationalen Kontext, Berlin, VDE VERLAG, 2017.
13. Lee E.A. 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computation, 2008, pp. 363–369.
14. Colombo A.W., Gepp M., Oliveira J.B., Leitao P., Barbosa J., Wermann J. Digitalized and Harmonized Industrial Production Systems: The PERFoRM Approach, CRC Press, 2019, 332 p.
15. Zuehlke D. Annual Reviews in Control, 2010, no. 1(34), pp. 129–138.
16. Wiegers K.E., Beatty J. Software Requirements, 3rd Edition, 2013.
17. Gorecky D., Weyer S., Hennecke, A., Zühlke D. IFAC-PapersOnLine, 2016, vol. 49, рр. 79–84
18. Lee J. Smart Factory Systems. Informatik Spektrum, 2015, vol. 38, рр. 230–235.
19. Arnold C., Kiel D.; Voigt K. Innovative Business Models for the Industrial Internet of Things, BHM, 2017, vol. 162, рр. 371–381.
20. Hermann M., Pentek T., Otto B. Design Principles for Industrie 4.0 Scenarios: A Literature Review, Working Pap., 2015.
21. Stock T., Seliger G. Procedia CIRP, 2016, vol. 40, рр. 536–541.
22. Radziwon A., Bilberg A., Bogers M., Skov E. Procedia Eng., 2014, vol. 69.
23. Davis J., Edgar T., Porter J., Bernaden J., Sarli M. Comput. Chem. Eng., 2012, vol. 47, рр. 145–156.
24. Gentner S. CHIMIA Int. J. Chem., 2016, vol. 70, рр. 628–633.
25. Li X., Li D., Wan J., Vasilakos A.V., Lai C.F., Wang S. Wirel. Netw., 2017, vol. 23, рр. 23–41.
26. Qin J., Liu Y., Grosvenor R. Procedia CIRP, 2016, vol. 52, рр. 173–178.
27. Rauch E., Dallasega P., Matt D.T. Procedia CIRP, 2016, vol. 50, рр. 26–31.
28. Vogel-Heuser B., Hess D. IEEE Trans. Autom. Sci. Eng., 2016, vol. 13, рр. 411–413.
29. Oesterreich T.D., Teuteberg F. Comput. Ind., 2016, vol. 83, рр. 121–139.
30. Kolberg D., Zühlke D. IFAC-PapersOnLine, 2015, vol. 28, рр. 1870–1875.
31. Kannan S.M., Suri K., Cadavid J., Barosan I., Van Den Brand M., Alferez M., Gerard S. Proceedings of the IEEE International Conference on Software Architecture Workshops (ICSAW), Gothenburg, Sweden, April 5–7, 2017, pp. 29–35.
32. Cheng S.Q.K., Cheng K. Chin. J. Mech. Eng., 2017, vol. 30, рр. 1047–1049.
33. Dugenske A., Louchez A. Advant. Bus. Media, 2014, vol. 19, рр. 1–5.
34. Erol S., Jäger A., Hold P., Ott K., Sihn W. Procedia CIRP, 2016, vol. 54, рр. 13–18.
35. Robert H., Daniel V., Bilal A. Chin. J. Mech. Eng., 2016, vol. 29, рр. 1046–1051.
36. Yao X., Jin H., Zhang J. Int. J. Comput. Integr. Manuf., 2015, vol. 28, рр. 1291–1312.
37. Xun X. Robot. Comput. Integr. Manuf. 2012, vol. 28, 75–86.
38. Akeson L. Industry 4.0: Cyber-Physical Systems and Their Impact on Business Models, Master’s Thesis, Karlstads University, Karlstad, Sweden, 2016.
39. ISA-95. Enterprise-Control System Integration, https://www.isa.org/standards-and-publications/isa-standards/isastandards-committees/isa95.
40. Bykov V.P. Metodicheskoye obespecheniye SAPR v mashinostroyenii (Methodological Support of CAD in Mechanical Engineering), Leningrad, 1989, 255 р. (in Russ.)
41. Boyd A., Noller D., Peters P., Salkeld D., Thomasma T., Gifford C., Pike S., Smith A. SOA in manufacturing guidebook, MESA International, IBM Corporation and Capgemini co-branded white paper, 2008, pp. 24–29.
42. Colombo A.W., Bangemann T., Karnouskos S., Delsing J., Stluka P., Harrison R., Jammes F., Lastra J.L. Industrial Cloud-Based Cyber-Physical Systems: The IMC-AESOP Approach, Springer Science & Business Media, 2014, 245 p.
43. Usländer T., Epple U. at-Automatisierungstechnik, 2015, no. 10(63), pp. 858–866.
44. Epple U. A Reference Architectural Model for Industrie 4.0, RWTH Aachen University, 2016.
45. Park H.S., Febriani R.A. Procedia Manufacturing, 2019, vol. 38, pp. 1660–1667.
46. Kannengiesser U., Müller H. 2018 IEEE Industrial Cyber-Physical Systems (ICPS), May 15, 2018, IEEE, pp. 51–56.
47. Wang Y., Towara T., Anderl R. Proceedings of the World Congress on Engineering and Computer Science, 2017, vol. 2, pp. 25–27.
48. European Commission website. Production harmonizEd Reconfiguration of Flexible Robots and Machinery url: https://cordis.europa.eu/project/id/680435
49. Abyshev O., Yablochnikov E. Conference of Open Innovations Association, FRUCT 2021, no. 29, pp. 395–399
Review
For citations:
Abyshev O.A., Yablochnikov E.I., Zakoldaev D.A. Service-oriented architectural model of discrete production system. Journal of Instrument Engineering. 2023;66(1):43-55. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-1-43-55