Isophotometric Method for Determining Low-Intensity Spectrum Lines
https://doi.org/10.17586/0021-3454-2022-65-7-513-519
Abstract
The possibilities of isophotometry methods for the analysis of low-intensity spectral lines are considered. The purpose of spectrum isophotometry is to detect spectral lines and zones of a low intensity level. The proposed method serves as an alternative to the traditional methods of registering spectrum lines that use photographing the spectrum on the image receiver, which allows obtaining information on the distribution of the relative intensity of the spectrum in the range of two orders of magnitude. The isophotometry of the point spread function makes it possible to obtain a range of relative illumination differences in the image up to 10–4 – 10–5. The same possibilities open up with spectrum isophotometry. The basics of innovative methods of isophotometry of radiation and fields are briefly reviewed. It is noted that the main advantage of the spectrum isophotometry method is the possibility of detecting new spectral lines that cannot be detected by traditional methods. The method effectiveness and the scope of its application are described.
About the Authors
V. K. KirillovskyRussian Federation
Vladimir K. Kirillovsky – Dr. Sci., Professor; Faculty of Engineering and Research
St. Petersburg
T. V. Tochilina
Russian Federation
Tatiana V. Tochilina – PhD; Faculty of Engineering and Research
St. Petersburg
References
1. Kirillovskiy V.K., Tochilina T.V. Opticheskie izmereniya. Chast' 5(Optical Measurements. Part 5), St. Petersburg, 2019, 35 р. (in Russ.)
2. Kirillovskiy V.K. Sovremennye opticheskie issledovaniya i izmereniya (Modern Optical Studies and Measurements), St. Petersburg, 2022, 340 р. (in Russ.)
3. Kirillovskiy V.K., Tochilina T.V. Opticheskie izmereniya. Chast' 4. Otsenka kachestva opticheskogo izobrazheniya i izmereniye yego kharakteristik (Optical Measurements. Part 4. Evaluation of optical image quality and measurement of its characteristics), St. Petersburg, 2018. 86 р. (in Russ.)
4. Ivanova T.A., Kirillovskiy V.K. Proyektirovaniye i kontrol' optiki mikroskopov (Design and Control of Microscope Optics), Leningrad, 1984, 231 р. (in Russ.)
5. Rodionov S.A. Osnovy optiki. Konspekt lektsiy (Fundamentals of Optics. Lecture Notes), St. Petersburg, 2000, 167 р. (in Russ.)
6. Zverev V.A. Osnovy geometricheskoy optiki (Fundamentals of Geometric Optics), St. Petersburg, 2002, 218 р. (in Russ.)
7. Kreopalova G.V., Lazareva N.L., Puryayev D.T. Opticheskiye izmereniya (Optical Measurements), Moscow, 1987, 264 р. (in Russ.)
8. Eskova L.M., Gavrilin D.V. Komp'yuternyye metody kontrolya optiki (Computer Methods for Controlling Optics), St. Petersburg, 2004, 89 р. (in Russ.)
9. Malacara D., ed., Optical shop testing, Wiley-Interscience, A John Wiley & Sons, Inc., 2007.
10. Zaydel' A.N. Osnovy spektral'nogo analiza (Fundamentals of Spectral Analysis), Moscow, 1965, 324 р. (in Russ.)
11. Kirillovskiy V.K., Tochilina T.V. Opticheskie izmereniya. Chast' 6. Innovatsionnyye napravleniya v opticheskikh izmereniyakh i issledovaniyakh opticheskikh system (Optical Measurements. Part 6. Innovative Directions in Optical Measurements and Research of Optical Systems), St. Petersburg, 2019, 96 р. (in Russ.)
12. Zverev V.A., Kirillovskiy V.K., Sokol'skiy M.N. Sovremennaya prikladnaya optika i opticheskiye pribory. Chast' 2 (Modern Applied Optics and Optical Devices. Part 2), Leningrad, 1975, рр. 62–63. (in Russ.)
13. Zverev V.A., Kirillovskiy V.K., Sokol'skiy M.N. Journal of Optical Technology, 1976, no. 12, pp. 6–8. (in Russ.)
14. Sahu R., Mordechai Sh. Applied Spectroscopy Reviews, 2016, no. 6(51), pp. 484–499, DOI: 10.1080/05704928.2016.1157809.
15. Hammes G.G. Spectroscopy for the Biological Sciences, 2005, 192 р., DOI:10.1002/bmb.2006.49403402161.
16. Popescu M., Birlan M., Gherase R.M., Sonka A., Naiman M., Cristescu C.P. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2012, no. 3(74), pp. 107–120.
17. Mandon J., Guelachvili G. & Picqué N. Nature Photonics, 2009, vol. 3, рр. 99–102, DOI:10.1038/nphoton.2008.293.
18. Coddington I., Swann W.C., Newbury N.R. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2010, no. 4(82), DOI: 10.1103/PhysRevA.82.043817.
19. Schiller S. Opt. Lett., 2002, no. 27, pp. 766–768, DOI: 10.1364/OL.27.000766.
20. Gohle C., Stein B., Schliesser A., Udem T. & Hänsch T.W. Phys. Rev. Lett., 2007, no. 99, pp. 263902, DOI: 10.1103/PhysRevLett.99.263902.
Review
For citations:
Kirillovsky V.K., Tochilina T.V. Isophotometric Method for Determining Low-Intensity Spectrum Lines. Journal of Instrument Engineering. 2022;65(7):513-519. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-7-513-519






















