Preview

Journal of Instrument Engineering

Advanced search

Method for Overall Calculation of an Integral-field Mirror Module

https://doi.org/10.17586/0021-3454-2023-66-8-680-687

Abstract

A method for overall calculation of an integral-field mirror module is developed. A schematic solution based on mirror elements is described, features are considered, and an approach to design is proposed. An example of calculating the optical system of the mirror module of the integral field of the KST-3 solar telescope-coronagraph is presented. To achieve the goal, methods for calculating optical systems, mathematical and computer modeling, as well as methods for optimizing optical systems are used. The practical significance of the result lies in achieving a high temporal resolution of solar telescopes while maintaining high spatial and spectral resolution. The considered approaches can be extended for use in the modernization of spectrometers and the expansion of the observatory instrumental park.

About the Authors

M. K. Orekhova
ITMO University
Russian Federation

Maria K. Orekhova — Post-Graduate Student;  The Center of Applied Optics

St. Petersburg



A. V. Bakholdin
ITMO University
Russian Federation

Alexey V. Bakholdin — PhD, Associate Professor; The Center of Applied Optics 

St. Petersburg



References

1. Bacon R. Optical 3D-Spectroscopy for Astronomy, NY, John Wiley & Sons, 2017, 296 p.

2. Mediavilla E. et al. 3D Spectroscopy in Astronomy, Cambridge, Cambridge University Press, 2010, 271 p.

3. Grigoryev V.M., Demidov M.L., Kolobov D.Yu., Pulyaev V.A., Skomorovsky V.I., Chuprakov S.A. Solar-Terrestrial Physics, 2020, no. 2(6), pp. 14–29.

4. Zherebtsov G.A. Solar-Terrestrial Physics, 2020, no. 2(6), pp. 3–13.

5. Bacon R. et al. Proceedings of SPIE, 2004, vol. 5249, https://doi.org/10.1117/12.512397.

6. Laurent F. et al. Proceedings of SPIE, 2005, vol. 5965, https://doi.org/10.1117/12.624836.

7. Laurent F. et al. Proceedings of SPIE, 2010, vol. 7739, https://doi.org/10.1117/12.857004.

8. Calcines A. et al. Journal of Astronomical Instrumentation, 2013, no. 1(2), pp. 50009, https://doi.org/10.1142/S2251171713500098.

9. Calcines A. et al. Proceedings of SPIE, 2010, vol. 7735, https://doi.org/10.1117/12.856725.

10. Calcines A. et al. Proceedings of SPIE, 2014, vol. 9147, https://doi.org/10.1117/12.2053577.

11. Eikenberry S. et al. Proceedings of SPIE, 2004, vol. 5492, https://doi.org/10.1117/12.549150.

12. Glenn P. et al. Proceedings of SPIE, 2004, vol. 5492, https://doi.org/10.1117/12.551661.

13. Content R. Proceedings of SPIE, 2006, vol. 6269, https://doi.org/10.1117/12.672312.

14. Surya A. et al. Proceedings of SPIE, 2020, vol. 11452, https://doi.org/10.1117/12.2561766.

15. Kushibiki K. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2560431.

16. Loupias M. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2561374.

17. Content R. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2562744.

18. Chabot T. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2562458.

19. McGurk R. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2562950.

20. Lawrence J. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2563238.

21. Content R. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2563127.

22. Ozaki S. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2560602.

23. Chen S. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2561942.

24. Ozer Z. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2560359.

25. Nelson P. et al. Proceedings of SPIE, 2010, vol. 7735, https://doi.org/10.1117/12.857610.

26. Wijn A. et al. Proceedings of SPIE, 2012, vol. 8446, https://doi.org/10.1117/12.926497.

27. Rains A. Proceedings of SPIE, 2018, vol. 10702, https://doi.org/10.1117/12.2314336.

28. Jarno A. et al. Proceedings of SPIE, 2012, vol. 8449, https://doi.org/10.1117/12.926420.

29. Allington-Smith J. New Astronomy Reviews, 2006, no. 4-5(50), pp. 244–251, https://doi.org/10.1016/j.newar.2006.02.024.

30. Witt E. Proceedings of SPIE, 2020, vol. 11444, https://doi.org/10.1117/12.2562537.

31. Peysakhson I.V. Optika spektral'nykh priborov (Optics of Spectral Instruments), Leningrad, 1975. (in Russ.)


Review

For citations:


Orekhova M.K., Bakholdin A.V. Method for Overall Calculation of an Integral-field Mirror Module. Journal of Instrument Engineering. 2023;66(8):680-687. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-8-680-687

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)