Preview

Journal of Instrument Engineering

Advanced search

Effect of Fused Quartz Structuring by Laser-Induced Microplasma and Purification on Multisector Binary Phase Plates Operation

https://doi.org/10.17586/0021-3454-2022-65-10-747-762

Abstract

For each stage of phase optical elements (POEs) production, including the POEs recording with laserinduced microplasma and post-processing, the influence on the microgeometry parameters of the microrelief formed on the POE surface, which ensures their high quality and energy conversion efficiency, is studied. The conditions for the each of the POE manufacturing stages implementation providing repeatability of the stage results in terms of the formed microgeometry relief depth and characteristics of its surface roughness, are given. All the studies are carried out using multi-sector binary phase plates chosen for their relative simplicity of design compared to other POEs of a similar purpose. It is shown that the best results on the PHE surface roughness with the complete elimination of graphite particles polluting the surface of multisectoral binary phase plates and possible micro/nanodefects and stresses arising during recording by laser-induced microplasma technology, are achieved by post-processing in the form of annealing at a temperature of 900 ° C for 1 h.

About the Authors

G. K. Kostyuk
ITMO University
Russian Federation

Galina K. Kostyuk — PhD, Faculty of Nanoelectronics; Research Fellow

St. Petersburg



D.  S. Stepanyuk
ITMO University
Russian Federation

Dmitriy S. Stepanyuk — Faculty of Nanoelectronics; Laboratory Assistant

St. Petersburg



V. A. Shkuratova
ITMO University
Russian Federation

Victoria A. Shkuratova — MSc, Faculty of Nanoelectronics

St. Petersburg



A. A. Petrov
ITMO University
Russian Federation

Andrey A. Petrov — PhD, Faculty of Nanoelectronics; Senior Lecturer

St. Petersburg



N. A. Nesterov
ITMO University
Russian Federation

Nikita A. Nesterov — Faculty of Nanoelectronics

St. Petersburg



References

1. Hnatovsky C. et al. Opt. Lett., 2012, no. 2(37), pp. 226–228.

2. Syubaev S. et al. Opt. Express., 2017, no. 9(25), pp. 10214–10223.

3. Chen M. et al. Opt. Lett., 2013, no. 22(38), pp. 4919–4922.

4. Ng J., Lin Z., Chan C.T. Phys. Rev. Lett., 2010, no. 10(104), pp. 103601.

5. Wang J. et al. Nat. Photonics., 2012, no. 7(6), pp. 488–496.

6. Nagali E. et al. Phys. Rev. Lett., 2009, no. 1(103), pp. 013601.

7. Massari M. et al. Appl. Opt., 2015, no. 13(54), pp. 4077–4083.

8. Cheong W. C. et al. Appl. Phys. Lett., 2004, no. 23(85), pp. 5784–5786.

9. Ruffato G. et al. Opt. Eng., 2015, no. 11(54), pp. 111307.

10. Ruffato G. et al. Opt. Lett., 2014, no. 17(39), pp. 5094–5097.

11. Shi L. et al. Opt. Express., 2015, no. 7(23), pp. 8620–8629.

12. Sueda K. et al. Opt. Express., 2004, no. 15(12), pp. 3548–3553.

13. Jun C. et al. Chin. Phys. Lett., 2009, no. 1(26), pp. 014202.

14. Khonina S. N. et al. Sci. Rep., 2018, no. 1(8), pp. 1–11.

15. Brasselet E. et al. Appl. Phys. Lett., 2010, no. 21(97), pp. 211108.

16. Zukauskas A. et al. Appl. Phys. Lett., 2013, no. 18(103), pp. 181122.

17. Veiko V.P. et al. Quantum Electron., 2017, no. 9(47), pp. 842–848.

18. Zhang J., Sugioka K., Midorikawa K. Appl. Phys. A, 1998, no. 4(67), pp. 499–501.

19. Cheng J.-Y. et al. J. Micromech. Microeng., 2005, no. 6(15), pp. 1147–1156.

20. Harm W. et al. Opt. Express., 2015, no. 1(23), pp. 413–421.

21. Ovsianikov A. et al. ACS Nano, 2008, no. 11(2), pp. 2257–2262.

22. Malinauskas M. et al. Opt. Express., 2010, no. 10(18), pp. 10209–10221.

23. Zhou L. et al. High Power Laser Sci., 2018, no. e6(6), DOI:10.1017/hpl.2018.1

24. Kostyuk G. K. et al. Opt. Lasers Eng., 2015, vol. 68, рр. 16–24.

25. Kostyuk G.K. et al. Opt. Lasers Eng., 2017, vol. 92, рр. 63–69.

26. Shkuratova V. et al. Appl. Phys. B, 2020, no. 4(126), pp. 1–6.

27. Hopp B. et al. J. Laser Micro Nanoeng., 2010, no. 1(5), pp. 80–85.

28. Lorenz P., Ehrhardt M., Zimmer K. Appl. Surf. Sci., 2012, no. 24(258), pp. 9742–9746.

29. Hanada Y. et al. Appl. Phys. A, 2004, no. 4(79), pp. 1001–1003.

30. Lorenz P., Ehrhardt M., Zimmer K. Phys. Procedia, 2012, vol. 39, рр. 542–547.

31. Zhang J., Sugioka K., Midorikawa K. Appl. Phys. A, 1998, no. 5(67), pp. 545–549.

32. Hopp B. et al. Appl. Phys. A, 2009, no. 4(94), pp. 899–904.

33. Blonskyy I.V., Danko A.Y., Kadan V.N., Orieshko E.V., Puzikov V.M. Technical Physics, 2005, no. 3(75), pp. 358–363.

34. Veiko V. P. et al. J. Phys. D: Appl. Phys., 1980, no. 8(13), pp. 1565.

35. Koval V. V. et al. J. Opt. Technol., 2017, no. 7(84), pp. 447–452.

36. Cheng Y., Sugioka K., Midorikawa K. Proc. SPIE, 2005, vol. 5627, рр. 247–257.

37. Kostyuk G. K. et al. Opt. Laser. Technol., 2022, vol. 152, рр. 108161.

38. Khonina S.N. Opt. Eng., 2013, no. 9 (52), pp. 091711.

39. Rubano A. et al. J. Opt. Soc. Am. A, 2019, no. 5(36), pp. D70–D87.

40. Cardano F. et al. Appl. Opt., 2012, vol. 51, рр. C1–C6.

41. Beresna M. et al. Appl. Phys. Lett., 2011, no. 20(98), pp. 201101.

42. Zhou J. et al. Sci. Rep., 2016, no. 1(6), pp. 1–9.

43. Qi J. et al. Photonics Res., 2021, no. 5(9), pp. 803–813.

44. Ahamed M.J., Senkal D., Shkel A.M. Proc. IEEE ISISS, 2014, рр. 1–4.

45. Wang Y., Shkel A.M. Proc. IEEE ISISS, 2016, рр. 101–104.

46. Ahamed M.J., Senkal D., Shkel A.M. Proc. IEEE ISISS, 2014, рр. 1–2.


Review

For citations:


Kostyuk G.K., Stepanyuk D.S., Shkuratova V.A., Petrov A.A., Nesterov N.A. Effect of Fused Quartz Structuring by Laser-Induced Microplasma and Purification on Multisector Binary Phase Plates Operation. Journal of Instrument Engineering. 2022;65(10):747-762. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-10-747-762

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)