Calculation of cracks in metal structures of transport infrastructure facilities
https://doi.org/10.17586/0021-3454-2022-65-6-451-456
Abstract
An actual approach to solving problems of the theory of cracks related to the so-called “extremal problems of mechanics” is presented. The problem of “brittle fracture” for a flat element in the presence of a rectangular crack in it, is considered. An analysis of the fracture change dynamics is carried out based on a mathematical model in partial derivatives. The calculations are performed with specific parameters of the material, in particular aluminum, of the elastic element and the load. The obtained results lead to conclusion on importance of geometric arrangement of the elastic elements in metal products of objects of transport infrastructure monitoring.
Keywords
About the Authors
V. L. TkalichRussian Federation
Vera L. Tkalich - Dr. Sci., Professor, Faculty of Secure Information Technologies
St. Petersburg
M. E. Kalinkina
Russian Federation
Maria Е. Kalinkina - M. Sc., Faculty of Control Systems and Robotics
St. Petersburg
A. G. Korobeynikov
Russian Federation
Anatoly G. Korobeynikov - Dr. Sci., Professor, Faculty of Secure Information Technologies; Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the RAS, St. Petersburg Branch
St. Petersburg
O. I. Pirozhnikova
Russian Federation
Olga I. Pirozhnikova - PhD, Faculty of Secure Information Technologies
St. Petersburg
References
1. BSI, Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standards Institute, Tech. Rep. BS 7910:2013+A1:2015, 2015, https://doi.org/10.3403/30241230.
2. Lurie A.I. Teoriya uprugosti (Theory of Elasticity), Moscow, 1970, 940 р. (in Russ.)
3. Newman J.C. and Raju I.S. Engineering Fracture Mechanics, 1981, no. 1(15), pp. 185–192, https://doi.org/10.1016/0013-7944(81)90116-8.
4. Bowness D. and Lee M.M.K. International Journal of Fatigue, 2000, no. 5(22), pp. 369–387, https://doi.org/10.1016/S0142-1123(00)00012-8.
5. Morozov N.F. Matematicheskiye voprosy teorii treshchin (Mathematical Problems of the Theory of Cracks), Moscow, 1984. (in Russ.)
6. Korobeynikov A.G., Fedosovsky M.E., Maltseva N.K., Baranova O.V., Zharinov I.O., Gurjanov A.V., Zharinov O.O. Indian Journal of Science and Technology, 2016, no. 44(9), pp. 104708.
7. Korobeynikov A.G., Grishentsev A.Y., Velichko E.N., Aleksanin S.A., Fedosovskii M.E., Bondarenko I.B., Korikov C.C. Optical Memory & Neural Networks (Information Optics), 2016, no. 3(25), pp. 184–191.
8. Grishentcev A.U., Korobeynikov A.G. Zhurnal Radioelektroniki (Journal of Radio Electronics), 2015, no. 3, https://elibrary.ru/download/elibrary_23327290_33687569.pdf.
9. Bogatyrev V.A., Bogatyrev S.V. Vestnik komp'iuternykh i informatsionnykh tekhnologii (Herald of Computer and Information Technologies), 2018, no. 2(164), pp. 28–35. (in Russ.)
10. Muntyan E.R. Informatizatsiya i svyaz', 2021, no. 3, pp. 55–60, DOI: 10.34219/2078-8320-2021-12-3-55-60.(in Russ.)
11. Kolodenkova A.E., Vereshchagina S.S., Muntyan E.R. Sbornik trudov XIII Vserossiyskogo soveshchaniya po problemam upravleniya VSPU-2019 (Proceedings of the XIII All-Russian Conference on Management Problems of the VSPU-2019), 2019, рр. 1874–1878, DOI: 10.25728/vspu.2019.1874. (in Russ.)
Review
For citations:
Tkalich V.L., Kalinkina M.E., Korobeynikov A.G., Pirozhnikova O.I. Calculation of cracks in metal structures of transport infrastructure facilities. Journal of Instrument Engineering. 2022;65(6):451-456. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-6-451-456