Modeling of dynamic processes in the composite winding density control system
https://doi.org/10.17586/0021-3454-2022-65-6-420-429
Abstract
Despite the fairly long and successful practice of automating the methods of manufacturing hollow composite products, it is necessary to create a control system for the process of filament winding. The control system must take into account the relationship between the geometric parameters of the winding being created and the parameters of its strained state. In order to correctly account for the properties of the control object, a model of the dynamics of the processes of this method has been developed, subject to changes in the mass of the control object and its moment of inertia. The obtained equations are the basis for creating a control system, where the angular velocity of the mandrel and the increment of the winding radius are used as the control parameter.
About the Authors
A. Yu. KutinRussian Federation
Aleksey Yu. Kutin - PhD, Associate Professor$ Leading Programmer
St. Petersburg
V. M. Musalimov
Russian Federation
Victor M. Musalimov - Dr. Sci., Professor, Faculty of Control Systems and Robotics
St. Petersburg
М. S. Malov
Russian Federation
Mikhail S. Malov - Post-Graduate Student; Faculty of Control Systems and Robotics
St. Petersburg
References
1. Kutin A., Musalimov V. Proceedings of the 2019 IEEE International Conference on Mechatronics, ICM 2019, 2019. pp. 332–336.
2. Ryabov V.G., Azmetov H.X., Makarov D.A. Elementy analiticheskoy mekhaniki. Uravneniya Lagranzha II roda i primery resheniya zadach (Elements of Analytical Mechanics. Lagrange Equations of the Second Kind and Examples of Problem Solving), Moscow, 2011, 76 р. (in Russ.)
3. Routh E.J. Dynamics of a system of rigid bodies, London, 1877.
4. Musalimov V.M., Sergushin P.A. Analiticheskaya mekhanika. Uravneniye Lagranzha vtorogo roda. Svobodnyye kolebaniya (Analytical Mechanics. The Lagrange Equation of the Second Kind. Free Vibrations), St. Petersburg, 2007, 53 р. (in Russ.)
5. Ovchinnikov V.V. Prikladnaya mekhanika (Applied Mechanics), Moscow, 2014, 308 р. (in Russ.)
6. Suslov G.K. Teoreticheskaya mekhanika (Theoretical Mechanics), Moscow, 1971, 236 р. (in Russ.)
7. Elyash N.N. Dinamika transportnykh i tekhnologicheskikh mashin (Dynamics of Transport and Technological Machines), Yekaterinburg, 2016, 52 р. (in Russ.)
8. Gaiduk A.R. Nepreryvnyye i diskretnyye dinamicheskiye sistemy (Continuous and Discrete Dynamical Systems), Moscow, 2004, 252 р. (in Russ.)
9. Gaiduk A.R., Belyaev V.E., Piavchenko T.A. Teoriya avtomaticheskogo upravleniya v primerakh i zadachakh s MATLAB (Automatic Control Theory in Examples and Tasks with MATLAB), St. Petersburg, 2017, 464 р. (in Russ.)
10. Glazyrin G.V. Teoriya avtomaticheskogo regulirovaniya (Theory of Automatic Control), Novosibirsk, 2017, 168 р. (in Russ.)
11. Voronov A.A., ed., Teoriya avtomaticheskogo upravleniya. Chast' 1: Teoriya lineynykh sistem avtomaticheskogo upravleniya (Theory of Automatic Control. Part 1: Theory of Linear Automatic Control Systems), Moscow, 1977, 303 р. (in Russ.)
Review
For citations:
Kutin A.Yu., Musalimov V.M., Malov М.S. Modeling of dynamic processes in the composite winding density control system. Journal of Instrument Engineering. 2022;65(6):420-429. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-6-420-429