Investigation of the possibility of combining a fiber-optic communication line and an object monitoring system
https://doi.org/10.17586/0021-3454-2022-65-6-406-412
Abstract
Currently, fiber-optic communication lines have become the main medium for data transmission, and fiber- optic sensors are increasingly being used to monitor the state of various objects, the sensitive element of which are sections of optical fiber with macro-bends. The possibility of combining a fiber-optic communication line and an object condition monitoring system on the basis of a single fiber is shown. It is proposed to use a wavelength of 1310 nm for transmitting information, and 1490, 1550 and 1625 nm for monitoring the state of the object. An experimental setup is proposed, which provides the possibility of simultaneous use of optical fiber for data transmission and information retrieval from the monitoring system. Parameters of the optical fiber macro bends that can be used in the sensors of the monitoring system are obtained. It is shown that macro-bends with such parameters practically do not contribute to additional attenuation of optical radiation at a wavelength of 1310 nm. The maximum number of sensors that can be used in the monitoring system with such macro-bending parameters is determined. The results of the research can be used in the creation of telecommunication systems combined with systems for monitoring the condition of objects.
About the Authors
А. O. ZenevichBelarus
Andrey O. Zenevich - Dr. Sci., Professor; Rector of the Academy
Minsk
S. V. Zhdanovich
Belarus
Sergey V. Zhdanovich - PhD, Associate Professor; Head of the Laboratory
Minsk
E. V. Novikov
Belarus
Evgeny V. Novikov - PhD, Associate Professor; Director of the Institute
Minsk
T. A. Matkovskaia
Belarus
Tatiana A. Matkovskaia - Post-Graduate Student, Department of Mathematics and Physics
Minsk
T. G. Kovalenko
Belarus
Tatiana G. Kovalenko - Post-Graduate Student, Department of Mathematics and Physics
Minsk
References
1. Agrawal G.P. Fiber-Optic Communication Systems, NY, Wiley-Interscience, 2002.
2. Dmitriev S.A., Slepov N.N. Volokonno-opticheskayatekhnika: sovremennoyesostoyaniyeinovyyeperspektivy (Fiber- Optic Technology: State of the Art and New Perspectives), Moscow, 2010, 607 р. (in Russ.)
3. Iorgachev D.V., Bondarenko O.V. Volokonno-opticheskiye kabeli i linii svyazi (Fiber Optic Cables and Communication Lines), Moscow, 2002, 276 р. (in Russ.)
4. Ubaidullaev R.R. Volokonno-opticheskiyeseti (Fiber Optic Networks), Moscow, 2001, 267 р. (in Russ.)
5. Fidanboylu K., Efendioğlu H.S. 5th International Advanced Technologies Symposium (IATS’09), May 13–15, 2009, Karabuk, Turkey, рр. 1–6.
6. Udd E., Spillman W.B., jr. Fiber Optic Sensors: an Introduction for Engineers and Scientists, NJ, John Wiley & Sons, 2011.
7. Iniewski K., Rajan G. Optical Fiber Sensors Advanced Techniques and Applications, Boca Raton, CRC Press, 2015.
8. Listvin A.V., Listvin V.N., Shvyrkov D.V. Opticheskiye volokna dlya liniy svyazi (Optical Fibers for Communication Lines), Moscow, 2003, 288 р. (in Russ.)
9. Vasileuski H.V., Zenevich A.O., Lagutik A.A., Lukashik T.M., Novikov E.V., Zhdanovich S.V. Vesnik Svjazi, 2020, no. 1(159), pp. 56–59. (in Russ.)
10. Vasileuski H.V., Zenevich A.O., Zhdanovich S.V., Lukashik T.M., Lagutik A.A. Journal of Instrument Engineering, 2020, no. 10(63), pp. 930–937. (in Russ.)
11. Sklyarov O.K. Volokonno-opticheskiye seti i sistemy svyazi (Fiber Optic Networks and Communication Systems), St. Petersburg, 2021, 268 р. (in Russ.)
12. Bailey D., Wright E. Practical Fiber Optics, Perth, Australia, 2003.
13. Listvin A.V. Reflektometriya opticheskikh volokon (Reflectometry of Optical Fibers), Moscow, 2005, 208 р. (in Russ.)
14. Soller B.J., Gifford D.K., Wolfe M.S., Froggatt M.E. Photonics Russia, 2019, no. 5(13), pp. 452–460. (in Russ.)
Review
For citations:
Zenevich А.O., Zhdanovich S.V., Novikov E.V., Matkovskaia T.A., Kovalenko T.G. Investigation of the possibility of combining a fiber-optic communication line and an object monitoring system. Journal of Instrument Engineering. 2022;65(6):406-412. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-6-406-412