Preview

Journal of Instrument Engineering

Advanced search

Identification of Non-Stationary Parameters of a Linear Regression Model Under Additive Influence of the Unmeasurable Sinusoidal Disturbance

https://doi.org/10.17586/0021-3454-2022-65-7-492-499

Abstract

In the framework of the deterministic approach, an algorithm for identifying nonstationary parameters for the classical linear regression equation is proposed. When synthesizing the algorithm for estimating non-stationary parameters, it is assumed that the dynamic model of their variation is known and is a linear generator with variable coefficients. An additional complication of the problem of estimating parameters for the linear regression equation is the presence of an additive sinusoidal disturbing effect with unknown constant amplitudes, frequencies, and phases. The resulting algorithm provides an accurate estimation of all unknown non-stationary parameters.

About the Authors

A. A. Bobtsov
ITMO University
Russian Federation

Alexey A. Bobtsov – Dr. Sci., Professor; Faculty of Control Systems and Robotics

St. Petersburg



A. V. Kaplin
ITMO University
Russian Federation

Alexey V. Kaplin – Post-Graduate Student; Faculty of Control Systems and Robotics

St. Petersburg



N. A. Nikolaev
ITMO University
Russian Federation

Nikolay A. Nikolaev – PhD, Associate Professor; Faculty of Control Systems and Robotics

St. Petersburg



O. V. Oskina
ITMO University
Russian Federation

Olga V. Oskina – Post-Graduate Student; Faculty of Control Systems and Robotics

St. Petersburg



References

1. Ljung L. System Identification, Theory for the User, NJ, PTR Prentice Hall, 1987.

2. Wang J., Le Vang T., Pyrkin A.A., Kolyubin S.A., Bobtsov A.A. Automation and Remote Control, 2018, no. 12(79), pp. 2159–2168.

3. Dung Kh.B., Pyrkin A.A., Bobtsov А.А., Vedyakov А.А. Journal of Instrument Engineering, 2021, no. 6(64), pp. 459–468. (in Russ.)

4. Le V.T., Korotina M.M., Bobtsov A.A., Aranovskiy S.V., Vo Q.D. Мechatronics, Automation, Control, 2019, no. 5(20), pp. 259–265. (in Russ.)

5. Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nelineynoye i adaptivnoye upravleniye slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg, 2000, 549 р. (in Russ.)

6. Demidovich B.P. Lektsii po matematicheskoy teorii ustoychivosti (Lectures on the Mathematical Theory of Stability), Moscow, 1967. (in Russ.)

7. Aranovskii S.V., Bobtsov A.A., Pyrkin A.A. Automation & Remote Control, 2009, no. 11(70), pp. 1862–1870.

8. Aranovskii S.V., Bobtsov A.A., Kremlev A.S., Luk’yanova G.V. Journal of Computer and Systems Sciences International, 2007, no. 3(46), pp. 371–376.

9. Korotina M., Romero J.G., Aranovskiy S., Bobtsov A., Ortega R. Systems and Control Letters, 2022, vol. 159, рр. 105079.

10. Bobtsov A., Yi B., Ortega R., Astolfi A. IEEE Transactions on Automatic Control, 2022. DOI: 10.1109/TAC.2022.3159568.

11. Ortega R., Bobtsov A., Nikolaev N., Schiffer J., Dochain D. Automatica, 2021, no. 129, pp. 109635.


Review

For citations:


Bobtsov A.A., Kaplin A.V., Nikolaev N.A., Oskina O.V. Identification of Non-Stationary Parameters of a Linear Regression Model Under Additive Influence of the Unmeasurable Sinusoidal Disturbance. Journal of Instrument Engineering. 2022;65(7):492-499. https://doi.org/10.17586/0021-3454-2022-65-7-492-499

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)