Preview

Journal of Instrument Engineering

Advanced search

Impact of control methods in virtual reality systems on the occurrence of locomotion disease symptoms

https://doi.org/10.17586/0021-3454-2022-65-5-357-371

Abstract

The problem of the occurrence of locomotion disease symptoms in users of virtual reality helmets is discussed. To control the user's movement in virtual reality, a controller implementing the walking-in-place technique is proposed. The device consists of three sensors fixed on the user's legs and chest. The analysis of sensor readings is carried out is used as a basis of developed algorithms for recognizing steps, suppressing random deviations, and increasing the system stability. Results of an experiment involving 44 volunteers are presented to demonstrate a decrease in the frequency of simulation disorder symptoms when using the developed controller.

About the Authors

Yu. V. Gnevashev
ITMO University
Russian Federation

Yuriy V. Gnevashev —   Student; Faculty of Control Systems and Robotics.

St. Petersburg



К. S. Gorshkov
ITMO University
Russian Federation

Constantin S. Gorshkov - PhD, Faculty of Control Systems and Robotics.

St. Petersburg



G. A. Кonovalov
ITMO University
Russian Federation

Georgy А. Konovalov    —      Student; Faculty of Control Systems and Robotics.

St. Petersburg



S. Yu. Lovlin
ITMO University
Russian Federation

Sergey Yu. Lovlin —      PhD; Faculty of Control Systems and Robotics.

St. Petersburg



D. A. Posokhov
ITMO University
Russian Federation

Daniil А. Posokhov - Student; Faculty of Control Systems and Robotics.

St. Petersburg



М. Kh. Tsvetkova
ITMO University
Russian Federation

Madina Kh. Tsvetkova - PhD; Faculty of Control Systems and Robotics.

St. Petersburg



References

1. Nigel F., Liliya K. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 6 (94).

2. Szpak A. et al. IEEE Access, 2019, vol. 7, рр. 130883–130892, https://doi.org/10.1109/ACCESS.2019.2940073.

3. Kennedy R. S. et al. The International Journal of Aviation Psychology, 1993, no. 3(3), pp. 203–220, https://doi.org/10.1207/s15327108ijap0303_3.

4. Risi D., Palmisano S. Displays, 2019, vol. 60, рр. 9–17, https://doi.org/10.1016/j.displa.2019.08.003 .

5. Rebenitsch L., Owen C. Virtual Reality, 2016, no. 2(20), pp. 101–125, https://doi.org/10.1007/s10055-016-0285-9.

6. Reason J.T. Journal of the Royal Society of Medicine, 1978, no. 11(71), pp. 819–829, https://doi.org/10.1177/014107687807101109.

7. Menshikova G.Ya. Psikhofiziologicheskiye mekhanizmy illyuzii dvizheniya sobstvennogo tela (Psychophysiological Mechanisms of the Illusion of Movement of One's Own Body), candidate’s thesis, Moscow, 2018, 160 р. (in Russ.)

8. Keshavarz B. et al. Frontiers in Psychology, 2015, vol. 6, рр. 472. https://doi.org/10.3389/fpsyg.2015.00472.

9. Riccio G.E., Stoffregen T.A. Ecological Psychology, 1991, no. 3(3), pp. 195–240. doi.org/10.1207/s15326969eco0303_2.

10. Villard S.J., Flanagan M.B., Albanese G.M., Stoffregen T.A. Human Factors, 2009, no. 2(50), pp. 332–345, https://doi.org/10.1518/001872008X250728.

11. Bruck S., Watters P.A. Displays, 2011, no. 4(32), pp. 153–158, https://doi.org/10.1518/001872008X250728.

12. Lee J., Kim M., Kim J. Symmetry, 2017, no. 5(9), pp. 78, https://doi.org/10.3390/sym9050078.

13. Lee J., Jeong K., Kim J. Computer Animation and Virtual Worlds, 2017, no. 3-4(28), pp. e1756, https://doi.org/10.1002/cav.1756.

14. Ng A.K.T., Chan L.K.Y., Lau H.Y.K. Displays, 2020, vol. 61, рр. 101922, https://doi.org/10.1016/j.displa.2019.08.004.

15. Boletsis C. Multimodal Technologies and Interaction, 2017, no. 4(1), pp. 24, https://doi.org/10.3390/mti1040024.

16. Boletsis C., Cedergren J.E. Advances in Human-Computer Interaction, 2019, vol. 2019, https://doi.org/10.1155/2019/7420781.

17. Weech S., Kenny S., Barnett-Cowan M. Frontiers in Psychology, 2019, vol. 10, рр. 158, https://doi.org/10.3389/fpsyg.2019.00158.

18. Usoh M. et al. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 1999, рр. 359–364, https://doi.org/10.1145/311535.311589.

19. Al Zayer M., MacNeilage P., Folmer E. IEEE Transactions on Visualization and Computer Graphics, 2018, https://doi.org/10.1109/TVCG.2018.2887379.

20. Slater M., Usoh M., Steed A. ACM Transactions on Computer-Human Interaction (TOCHI), 1995, no. 3(2), pp. 201–219, https://doi.org/10.1145/210079.210084.

21. Feasel J., Whitton M.C., Wendt J.D. 2008 IEEE Symposium on 3D User Interfaces, IEEE, 2008, рр. 97–104, https://doi.org/10.1109/3DUI.2008.4476598.

22. Pfeiffer T., Schmidt A., Renner P. 2016 IEEE Virtual Reality (VR), IEEE, 2016, рр. 263–264, https://doi.org/10.1109/VR.2016.7504754.

23. Tregillus S., Folmer E. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2016, рр. 1250–1255, https://doi.org/10.1145/2858036.2858084.

24. Tregillus S., Al Zayer M., Folmer E. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, рр. 4063–4068, https://doi.org/10.1145/3025453.3025521.

25. Iwata H. IEEE Computer Graphics and Applications, 1999, no. 6(19), pp. 30–35, https://doi.org/10.1109/38.799737.

26. Darken R.P., Cockayne W.R., Carmein D. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, 1997, рр. 213–221, https://doi.org/10.1145/263407.263550.

27. Bouguila L. et al. Proceedings of the 6th International Conference on Multimodal Interfaces, 2004, рр. 77–81, https://doi.org/10.1145/1027933.1027948.

28. Swapp D., Williams J., Steed A. 2010 IEEE Symposium on 3D User Interfaces (3DUI), IEEE, 2010, рр. 71–74, https://doi.org/10.1109/3DUI.2010.5444717.

29. Capece N., Erra U., Romaniello G. International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Springer, Cham, 2018, рр. 623–635, https://doi.org/10.1007/978-3-319-95282-6_44.

30. McCullough M. et al. Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, 2015, рр. 107–113, https://doi.org/10.1145/2804408.2804416.

31. Wilson P. T. et al. Proc. of the 15th ACM SIGGRAPH Conf. on Virtual-Reality Continuum and Its Applications in Industry, 2016, vol. 1, рр. 243–249, https://doi.org/10.1145/3013971.3014010.

32. Zielinski D.J., McMahan R.P., Brady R.B. 2011 IEEE Virtual Reality Conference, IEEE, 2011, рр. 167–170, https://doi.org/10.1109/VR.2011.5759456.

33. Teixeira L. et al. International Conference of Design, User Experience, and Usability, Springer, Berlin, Heidelberg, 2013, рр. 419–426, https://doi.org/10.1007/978-3-642-39238-2_46.

34. Wendt J.D., Whitton M.C., Brooks F.P. 2010 IEEE Virtual Reality Conference (VR), IEEE, 2010, рр. 51–58, https://doi.org/10.1109/VR.2010.5444812.

35. Nilsson N.C. et al. 2013 IEEE Symposium on 3D User Interfaces (3DUI), IEEE, 2013, рр. 31–38, https://doi.org/10.1109/3DUI.2013.6550193.

36. Park C., Jang K., Lee J. 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMARAdjunct), IEEE, 2018, рр. 254–257, https://doi.org/10.1109/ISMAR-Adjunct.2018.00079.

37. Yan L., Allison R.S., Rushton S.K. Proceedings of the IPT Symposium, 2004.

38. Shchekoldin A.I., Dema N.Yu., Shevyakov A.D., Kolyubin S.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, no. 5(17), pp. 798–804, https://doi.org/10.17586/2226-1494-2017-17-5-798-804. (in Russ.)

39. Jenkins G.M. and Watts D.G. Spectral analysis and its applications, San Francisco, Holden-Day, 1968.

40. https://thevrsoldier.com/serious-sam-the-first-encounter-vr-review-a-must-buy-unless-you-suffer-from-motionsickness.


Review

For citations:


Gnevashev Yu.V., Gorshkov К.S., Кonovalov G.A., Lovlin S.Yu., Posokhov D.A., Tsvetkova М.Kh. Impact of control methods in virtual reality systems on the occurrence of locomotion disease symptoms. Journal of Instrument Engineering. 2022;65(5):357-371. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-5-357-371

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)