Preferred pairs of GMW sequences with period N=1023 for digital information transmission systems
https://doi.org/10.17586/0021-3454-2022-65-1-28-35
Abstract
Based on an algorithm for the formation of preferred pairs (PP) of Gordon — Mills — Welch (GMWP) sequences, a complete list is obtained of PP GMWP with a period N=1023, which have a five-level periodic crosscorrelation function and different values of equivalent linear complexity, which acts as an indicator of structural secrecy pseudo-random sequences. The peculiarity of HMWR formation with period N=1023 is that for each basic M-sequences (MS), five HMWRs can be synthesized, while for periods N=63, N=255, N=511, only one HMWR can be constructed for each MS. There are 60 primitive polynomials in the GF(210) field, each of which can form ten PP MS. Structural secrecy of the GMWP with a period N=1023 is 2, 4, 8 times higher than the similar characteristic of the MS, which determines the preference for the use of the GMWP in digital information transmission systems, which are subject to increased requirements for noise immunity, confidentiality and secrecy.
About the Authors
V. G. StarodubtsevRussian Federation
Victor G. Starodubtsev — PhD, Associate Professor, Department of Technologies and Automation Means for processing and Analysis of Space Facilities Information, A. F. Mozhaisky Military Space Academy; ITMO University
St. Petersburg
E. Yu. Podolina
Russian Federation
Ekaterina Yu. Podolina — Student
St. Petersburg
A. K. Keloglyan
Russian Federation
Artem K. Keloglyan — Student
St. Petersburg
References
1. Vishnevskij V.M., Lyahov A.I., Portnoj S.L., Shahnovich I.V. Shirokopolosnye besprovodnye seti peredachi informacii (Broadband Wireless Data Transmission Network), Moscow, 2005, 592 p. (in Russ.)
2. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge University Press, 2005, 438 p.
3. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
4. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
5. Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003. 608 p. (in Russ.)
6. Chung H.B., No J.S. IEEE Transactions on Information Theory, 1999, no. 6(45), pp. 2060–2065.
7. Tang X.H., Pingzhi Z.F. IEEE Transactions on Information Theory, 2001, no. 4(47), pp. 1644–1649.
8. Popović B. M. IEEE Transactions on Information Theory, 2018, no. 4(64), pp. 2876–2882.
9. Rizomiliotis P., Kalouptsidis N. IEEE Transactions on Information Theory, 2005, vol. IT–51, pp. 1555–1563.
10. Starodubtsev V.G., Osadchaya Ya.V. Journal of Instrument Engineering, 2019, no. 7(62), pp. 610–620. (in Russ.)
11. Starodubtsev V.G. Journal of Instrument Engineering, 2021, no. 1(64), pp. 32–39. (in Russ.)
12. No Jong-Seon. IEEE Transactions on Information Theory, 1996, no. 1(42), pp. 260–262.
13. Starodubtsev V.G., Popov A.M. Journal of Instrument Engineering, 2017, no. 4(60), pp. 318–330. (in Russ.)
14. Peterson W.W., Weldon E.J. Error-correcting Codes, The MIT PRESS, Cambridge, Massachusetts and London, England, 1972, 588 p.
Review
For citations:
Starodubtsev V.G., Podolina E.Yu., Keloglyan A.K. Preferred pairs of GMW sequences with period N=1023 for digital information transmission systems. Journal of Instrument Engineering. 2022;65(1):28-35. (In Russ.) https://doi.org/10.17586/0021-3454-2022-65-1-28-35