Methods for filtering acoustic emission signals when monitoring defect formation in the process of direct laser growth of products
https://doi.org/10.17586/0021-3454-2023-66-10-852-868
Abstract
Results of acoustic emission monitoring of defect formation in products during direct laser growth are presented. The features of applying the acoustic emission method and results of processing recorded acoustic emission signals with the use of cascade polynomial digital filtering are considered. Results of experimental testing of the cascade filtration method for detecting internal structure defects such as cracks and pores are presented. Fragments of amplitude- time and frequency-time diagrams of acoustic emission signals recorded during the development of defects in the process of growing products are isolated. An assessment is made of the dependence of acoustic emission signals on defect formation parameters. A relationship between the acoustic emission signals parameters and applied laser radiation power is established, which characterizes the process of defect formation, as well as the nitrogen content in the heat-resistant alloy powder.
Keywords
About the Authors
Ye. AltayKazakhstan
Yeldos Altay - PhD; Chief Manager
Almaty
D. О. Kuzivanov
Russian Federation
Dmitry O. Kuzivanov - Post-Graduate Student; Faculty of Control Systems and Robotics
St. Petersburg
D. А. Rozhdestvensky
Russian Federation
Danila A. Rozhdestvensky - Department of Additive Technologies; Specialist of the Department
St. Petersburg
М. I. Sannikov
Russian Federation
Maksim I. Sannikov - Department of Additive Technologies; Engineer of the Department
St. Petersburg
К. А. Stepanova
Russian Federation
Ksenia A. Stepanova - PhD
St. Petersburg
References
1. Ivanov A.D., Minaev V.L., Vishnyakov G.N. Industrial laboratory. Diagnostics of materials, 2019, vol. 85, рp. 76–82. 2. Kovalevich A.S., Kinzhagulov I.Yu., Stepanova K.A., Kuzivanov D.O. Journal of Instrument Engineering, 2023, no. 2(66), pp. 139–147, DOI: 10.17586/0021-3454-2023-66-2-139-147. (in Russ.)
2. Kaplan M.A., Kirsankin A.A., Smirnov M.A., Kalaida T.A., Sevostyanov M.A. Novyye materialy i perspektivnyye tekhnologii (New Materials and Advanced Technologies), Collection of materials of the 4th Interdisciplinary Scientific Forum with International Participation, 2018, рр. 130–131. (in Russ.)
3. Litunov S.N., Slobodenyuk V.S., Melnikov D.V. Omsk Scientific Bulletin, 2016, no. 1(145), pp. 12–17. (in Russ.) 5. Wei Q., Xie Y., Teng Q., Shen M., Sun S., Cai C. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, vol. 1, рр. 100055.
4. Yang G., Xie Y., Zhao S., Qin L., Wang X., Wu B. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, рр. 100037.
5. Popkova I.S. Sbornik XVI mezhdunarodnoy nauchno-tekhnicheskoy Ural'skoy shkoly metallovedov-molodykh uchenykh (Collection of the XVI International Scientific and Technical Ural School of Metallurgists and Young Scientists), Part. 2, Ekaterinburg, 2015, рр. 276–279. (in Russ.)
6. Zhang B., Li Y., Bai Q. Chinese Journal of Mechanical Engineering, 2017, vol. 30, рр. 515–527.
7. Grange D., Bartout J.D., Macquaire B., Colin C. Materialia, 2020, vol. 12, рр. 100686.
8. Shahwaz M., Nath P., Sen I. Journal of Alloys and Compounds, 2022, рр. 164530.
9. Smirnov M.A., Kaplan M.A., Kirsankin A.A., Kalaida T.A., Sevostyanov M.A. Novyye materialy i perspektivnyye tekhnologii (New Materials and Advanced Technologies), Collection of materials of the 4th Interdisciplinary Scientific Forum with International Participation, 2018, рр. 307–310. (in Russ.)
10. Kaplan M.A., Kirsankin A.A., Smirnov M.A., Sevostyanov M.A. Novyye materialy i perspektivnyye tekhnologii (New Materials and Advanced Technologies), Collection of materials of the 4th Interdisciplinary Scientific Forum with International Participation, 2018, рр. 131–132. (in Russ.)
11. Barile C., Casavola C., Pappalettera G., Kannan V.P., Mpoyi D.K. Applied Sciences, 2023, vol. 13, р. 189.
12. Wang C., Tan X.P., Tor S.B., Lim C.S. Additive Manufacturing, 2020, vol. 36, рр. 101538.
13. Barat V.A. Razvitiye metoda akusticheskoy emissii za schet avtomatizatsii obrabotki dannykh, povysheniya pomekhoustoychivosti i dostovernosti obnaruzheniya treshchinopodobnykh defektov metallokonstruktsiy (Development of the Acoustic Emission Method by Automating Data Processing, Increasing Noise Immunity and Reliability of Detection of Crack-Like Defects in Metal Structures), Extended abstract of Doctor’s thesis, Moscow, 2019, 40 р. (in Russ.)
14. Altay Y.A., Fedorov A.V., Stepanova K.A. Proc. of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, 2022, рр. 1320–1326.
15. Altay Y., Fedorov A.V., Stepanova K.A., Kuzivanov D.O. Journal of Instrument Engineering, 2022, no. 10(65), pp. 735–746, DOI: 10.17586/0021-3454-2022-65-10-735-746. (in Russ.)
16. Altay Y., Fedorov A.V., Stepanova K.A. Control. Diagnostics, 2022, no. 6(25), pp. 36–45. (in Russ.)
17. Chernova V.V. Razrabotka metodiki akustiko-emissionnogo kontrolya defektov na ranney stadii ikh razvitiya v izdeliyakh iz kompozitsionnykh materialov (Development of a Technique for Acoustic Emission Monitoring of Defects at an Early Stage of Their Development in Products Made of Composite Materials), Extended abstract of candidate’s thesis, Tomsk, 2017, 21 р. (in Russ.)
18. Rastegaeva I.I., Rastegaev I.A., Agletdinov E.A. The comparison of the main time-frequency transformations of spectral analysis of acoustic emission signals. Frontier Materials and Technologies, 2022, no. 1, pp. 49–60.
19. Altay Y.A., Kremlev A.S. Proc. of the 2018 IEEE conference of Russian young researchers in electrical and electronic engineering, IEEE, 2018, рр. 1058–1062.
20. Altay Y.A., Kuzivanov D.O. Proc. of the 2023 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, 2023, рр. 1320–1326.
21. Zakharov L.А., Martyushev D.А., Ponomareva I.N. Journal of Mining Institute, 2022, vol. 253, рр. 23–32.
22. Elforjani M., Shanbr S. IEEE Transactions on industrial electronics, 2018, no. 7(65), pp. 5864–5871.
23. Smirnov M.A., Kaplan M.A., Sevostyanov M.A. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, vol. 347, рр. 012033.
24. Smirnov M.A., Kaplan M.A., Kirsankin A.A., Kalaida T.A., Nasakina E.O., Sevostyanov M.A. IOP Conference Series: Materials Science and Engineering, 2019, vol. 525, рр. 012076.
25. Tempelman J. R., Wachtor A.J., Flynn E.B., Depond P.J., Forien J.B., Guss, G.M., Matthews M. J. Additive Manufacturing, 2022, vol. 55, рр. 102735.
26. http://www.ilwt-stu.ru/upload/publications/DMD_ru.pdf. (in Russ.)
27. Barile C., Casavola C., Pappalettera G., Vimalathithan P. Mechanics of materials, 2020, vol. 148, рр. 103448.
28. Pandiyan V., Drissi-Daoudi R., Shevchik S., Masinelli G., Loge R., Wasmer K. Procedia CIRP, 2020, vol. 94, рр. 392–397.
29. Pandiyan V., Drissi-Daoudi R., Shevchik S., Masinelli G., Le-Quang T., Loge R., Wasmer K. Virtual and Physical Prototyping, 2021, vol. 16, рр. 481–497.
30. Altay Y.A., Kremlev A.S. Bulletin of the Russian New University Complex Systems: models, analysis and management, 2020, no. 2, pp. 18–28. (in Russ.)
31. Rastegaev I.A., Merson D.L., Rastegaeva I.I. Аktual'nyye problemy metoda akusticheskoy emissii (Actual Problems of the Acoustic Emission Method), Collection of materials of the All-Russian Conference, Tolyatti, 2018, рр. 103– 104. (in Russ.)
32. Makhutov N.A., Sokolova A.G., Vasil’ev I.E., Chernov D.V., Skvortsov D.F., Bubnov M.A., Ivanov V.I. Russian Journal of Nondestructive Testing, 2020, no. 12(56), pp. 960–970.
33. Frolov A.V., Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Proceedings of VIAM, 2015, no. 9, pp. 57–63. (in Russ.)
34. Zhang W., Jia H., Gao G., Cheng X., Du P., Xu D. Applied Acoustics, 2019, vol. 156, рр. 387–393.
Review
For citations:
Altay Ye., Kuzivanov D.О., Rozhdestvensky D.А., Sannikov М.I., Stepanova К.А. Methods for filtering acoustic emission signals when monitoring defect formation in the process of direct laser growth of products. Journal of Instrument Engineering. 2023;66(10):852-868. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-10-852-868