Preview

Journal of Instrument Engineering

Advanced search

Adaptive observers for nonlinear systems based on dynamic extension and mixing procedure

https://doi.org/10.17586/0021-3454-2023-66-10-828-833

Abstract

The problem of synthesizing an adaptive observer of state variables of nonlinear dynamic systems is considered. Correct estimation of state vector components under parametric uncertainty is a rather complex process necessary e.g. for solving several problems of systems control and diagnostic. Synthesis of the proposed adaptive observer consists of two steps. In the first one, a parameterization of the nonlinear dynamical system, which can be transformed to a state affine form, is performed. In the second step, the unknown parameters are estimated based on the gradient descent method, and a gradient-based observer for the state variables is designed.

About the Authors

V. V. Bespalov
ITMO University
Russian Federation

Vladimir V. Bespalov - Faculty of Control Systems and Robotics

St. Petersburg



А. А. Vedyakov
ITMO University
Russian Federation

Alexey А. Vedyakov - PhD, Faculty of Control Systems and Robotics

St. Petersburg



References

1. Kazantzis N. and Kravaris C. Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 1997, vol. 5, pp. 4802–4807, DOI: 10.1109/CDC.1997.649779.

2. Andrieu V. and Praly L. SIAM Journal on Control and Optimization, 2006, no. 45(2), pp. 432–456.

3. Ortega R., Bobtsov A., Pyrkin A., Aranovskiy S. Systems & Control Letters, 2015, vol. 85, pp. 84–94, ISSN 0167- 6911, https://doi.org/10.1016/j.sysconle.2015.09.008.

4. Ortega R., Bobtsov A., Nikolaev N., Schiffer J. Automatica, 2021, vol. 129, рр. 109635, ISSN 0005-1098, https://doi.org/10.1016/j.automatica.2021.109635.

5. Pyrkin A., Bobtsov A., Ortega R., Vedyakov A., Aranovskiy S. Systems & Control Letters, 2019, vol. 133, рр. 104519, ISSN 0167-6911, https://doi.org/10.1016/j.sysconle.2019.104519.

6. Sastry S., Bodson M. Adaptive Control: Stability, Convergence and Robustness, Englewood Cliffs, NJ, Prentice Hall, 1989.

7. Kreisselmeier G., Rietze-Augst G. IEEE Trans. Automat. Control, 1990, no. 35(2), pp. 165–171.

8. Afanasyev V.N., Kolmanovsky V.B., Nosov V.R. Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Mathematical Theory of Design of Control Systems), Moscow, 2003, ISBN: 5-06-004162-X. (in Russ.)


Review

For citations:


Bespalov V.V., Vedyakov А.А. Adaptive observers for nonlinear systems based on dynamic extension and mixing procedure. Journal of Instrument Engineering. 2023;66(10):828-833. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-10-828-833

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)