Preview

Journal of Instrument Engineering

Advanced search

Formation of sets of ternary Kasami-like sequences for digital information transmission systems

https://doi.org/10.17586/0021-3454-2023-66-10-807-817

Abstract

Sets of vectors of decimation indices IS(id1, id2, ..., idn) of ternary M-sequences are presented, on the basis of which small and large sets of Kasami-similar sequences (KSS) with periods N = 3S–1< 20000 are formed in finite fields GF(3S) (S = 4, 6, 8). It is shown that for even values of S, the periodic cross-correlation function of a small set of KSS is three-level with the maximum value of the module of the mutual correlation function |Rmax| = (3S/2+1)). The correlation function of a large set at S=4 is eight-level with |Rmax| = (2·3S/2+1), and at S = 6, 8 is ten-level with |Rmax| = (3S/2+1+1). The values of the volumes of small and large sets of ternary KSS are given.

About the Authors

V. G. Starodubtsev
A.F. Mozhaisky Military Space Academy
Russian Federation

Victor G. Starodubtsev - PhD, Associate Professor, Department of Technologies and means for Automating the Processing and Analysis of Spacecraft Information

St. Petersburg



E. A. Chetverikov
A.F. Mozhaisky Military Space Academy
Russian Federation

Evgeny A. Chetverikov - Department of Technologies and Means for Automating the Processing and Analysis of Spacecraft Information; Student

St. Petersburg



References

1. Vishnevskij V.M., Lyahov A.I., Portnoj S.L., Shahnovich I.V. Shirokopolosnye besprovodnye seti peredachi informacii (Broadband Wireless Data Transmission Network), Moscow, 2005, 592 p. (in Russ.)

2. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.

3. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.

4. Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003, 608 p. (in Russ.)

5. Ipatov V.P. Periodicheskie diskretnye signaly s optimal'nymi korrelyacionnymi svojstvami (Periodic Discrete Signals with Optimum Correlation Properties), Moscow, 1992, 152 p. (In Russ.).

6. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge, Cambridge Univ. Press, 2005.

7. Boztaş S., Özbudak F., Tekin E. Cryptogr. Commun., 2018, no. 3(10), pp. 509.

8. Cho Chang-Min, Kim Ji-Youp, No J.S. IEICE Transactions on Communications, 2015, no. 7(E98), pp. 1268.

9. Choi S.T., Lim T., No J.S., Chung H. IEEE Trans. Inf. Theory., 2012, no. 3(58), pp. 1873.

10. Dobbertin H., Helleseth T., Kumar P.V., Martinsen H. IEEE Trans. Inf. Theory, 2001, no. 4(47), pp. 1473.

11. Helleseth T., Kumar P.V., Martinsen H. Designs, Codes and Cryptography, 2001, no. 2(23), pp. 157.

12. Hu Z., Li X., Mills D., Muller E., Sun W., Williems W., Yang Y., Zhang Z. Applicable Algebra Eng. Commun. Comput., 2001, vol. 12, рр. 255.

13. Seo E.Y., Kim Y.S., No J.S., Shin D.J. IEEE Trans. Inf. Theory, 2008, no. 7(54), pp. 3140.

14. Jang J.W., Kim Y.S., No J.S., Helleseth T. IEEE Trans. Inf. Theory, 2004, no. 8(50), pp. 1839.

15. Liang H., Tang Y. Finite Fields and Their Applications, 2015, vol. 31, рр. 137.

16. Lee W.J., Kim J.Y., No J.S. IEICE Transactions on Communications, 2014, no. 1(E97-B), pp. 2311.

17. Muller E.N. IEEE Trans. Inf. Theory, 1999, no. 1(45), pp. 289.

18. Song M.K., Song H.Y. IEEE Trans. Inf. Theory, 2018, no. 4(64), pp. 2901.

19. Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.


Review

For citations:


Starodubtsev V.G., Chetverikov E.A. Formation of sets of ternary Kasami-like sequences for digital information transmission systems. Journal of Instrument Engineering. 2023;66(10):807-817. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-10-807-817

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)