Formation of highaspect-ratio channels of submillimeter diameter in polymethyl methacrylate by CO and СО2 lasers radiation
https://doi.org/10.17586/0021-34542023-66-9-789-797
Abstract
Results of experiments on the formation of submillimeter-diameter channels with a large aspect ratio (~100) in polymethyl methacrylate due to selected laser beam focusing parameters and the average power of a highfrequency pumped CO laser are presented. A comparative analysis of the possibilities of forming channels in polymethyl methacrylate using radiation from CO and CO2 lasers with high-frequency pumping is performed. Submillimeter channels with high aspect ratio can be used to create microfluidic chips.
About the Authors
A. A. IoninRussian Federation
Andrey A. Ionin - Dr. Sci., Professor; Gas Lasers Lab; Director of Department
Moscow
M. V. Ionin
Russian Federation
Maxim V. Ionin — Gas Lasers Lab; Junior Researcher
Moscow
Yu. M. Klimachev
Russian Federation
Yuriy M. Klimachev — PhD, Associate Professor; Gas Lasers Lab; Senior Researcher
Moscow
A. Yu. Kozlov
Russian Federation
Andrey Yu. Kozlov — PhD; Gas Lasers Lab; Senior Researcher
Moscow
D. V. Sinitsyn
Russian Federation
Dmitry V. Sinitsyn — PhD, Associate Professor; Gas Lasers Lab; Leading Researcher
Moscow
O. A. Rulev
Russian Federation
Oleg A. Rulev — Gas Lasers Lab; Junior Researcher
Moscow
References
1. Borisovskaya E.M., Karmanova O.V., Shcherbakova M.S., Kalmikov V.V. Proceedings of the Voronezh State University of Engineering Technologies, 2017, no. 1(79), pp. 264–270. (in Russ.)
2. Borzenok S.A., Malyugin B.E., Izmaylova S.B. et al. Fyodorov journal of ophthalmic, 2016, no. 4, pp. 16–19. (in Russ.)
3. Evstrapov А.А. Russian Journal of General Chemistry, 2011, no. 2(LV), pp. 99–110. (in Russ.)
4. Mark D., Haeberle S., Roth G., von Stetten F., Zengerle R.. Chemical Society Reviews, 2010, no. 3(39), pp. 1153–1182.
5. Klank H., Kutter J.P., Geschke O. Lab Chip, 2002, vol. 2, рp. 242.
6. Löhr C., La Fé-Perdomo I., Ramos-Grez J.A., Calvo J. Optics & Laser Technology, 2021, vol. 144, pр. 107386.
7. Prakash S., Kumar S. Optics & Laser Technology, 2021, vol. 139, рp. 107017.
8. Tokarev V.N. Quantum Electronics, 2006, no. 7(36), pp. 624–637. https://doi.org/10.1070/QE2006v036n07ABEH013181.
9. Bo Xia, Lan Jiang, Xiaowei Li, Xueliang Yan, Weiwei Zhao, Yongfeng Lu. Appl. Phys. A, 2014, no. 1(119), pp. 61–68.
10. Ionin A.A., Klimachev Yu.M., Kotkov A.A. et al. Infrared Physics & Technology, 2022, vol. 120, рр. 103921.
11. Mineev A.P., Nefedov S.M., Pashinin P.P. Quantum Electronics, 2006, no. 7(36), pp. 656–663. https://doi.org/10.1070/QE2006v036n07ABEH013201.
12. Dutov A.I., Kuleshov A.A., Novoselov N.A., Semenov V.E., Sokolov A.A. Proc. SPIE, XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, 2003, vol. 5120, рр. 84–86, DOI: 10.1117/12.515476.
13. Ionin A.A., Kozlov A.Yu., Seleznev L.V., Sinitsyn D.V. Kompaktnyy kriogennyy shchelevoy SO-lazer s nakachkoy yemkostnym VCH-razryadom (Compact Cryogenic Slab CO Laser Pumped by a Capacitive RF Discharge), Preprint FIAN, 2008, no. 1. (in Russ.)
Review
For citations:
Ionin A.A., Ionin M.V., Klimachev Yu.M., Kozlov A.Yu., Sinitsyn D.V., Rulev O.A. Formation of highaspect-ratio channels of submillimeter diameter in polymethyl methacrylate by CO and СО2 lasers radiation. Journal of Instrument Engineering. 2023;66(9):789-797. (In Russ.) https://doi.org/10.17586/0021-34542023-66-9-789-797