Methods for Optimizing Neural Network Models
https://doi.org/10.17586/0021-3454-2024-67-4-330-337
Abstract
Methods for building optimized deep learning accelerators are discussed. Traditional approaches to fault-tolerant deep learning accelerators are shown to rely on redundant computation, which results in significant overheads including training time, power consumption, and integrated circuit size. A method is proposed that considers differences in the vulnerability of individual neurons and the bits of each neuron, which partially solves the problem of computational redundancy. The method allows you to selectively protect model components at the architectural and circuit levels, which reduces overhead without compromising the reliability of the model. It is shown that quantization of the deep learning accelerator model allows data to be represented in fewer bits, which reduces hardware resource requirements.
About the Authors
N. S. MokretsovRussian Federation
Nikita S. Mokretsov — Post-Graduate Student, Department of Information Systems
St. Petersburg
E. D. Arkhiptsev
Russian Federation
Evgeny D. Arkhiptsev — Post-Graduate Student, Department of Information Systems
St. Petersburg
References
1. Chen Y., Luo T., Liu S., Zhang S., He L., Wang J., Li L., Chen T., Xu Z., Sun N. Annual IEEE/ACM Intern. Symp. on Microarchitecture, 2014, vol. 47, рр. 609–622.
2. Liu C., Chu C., Xu D., Wang Y., Wang Q., Li H., Li X., Cheng K., Hyca T. IEEE Transact. on Computer-Aided Design of Integrated Circuits and Systems, 2021, no. 10(41), pp. 3400–3413.
3. Dixit A., Wood A. 2011 Intern. Reliability Physics Symp., IEEE, 2011, pp. 5B–4.
4. Hoang L.H., Hanif M.A., Shafique M. Design, Automation & Test in Europe Conf. & Exhibition (DATE), IEEE, 2020, рр. 1241–1246.
5. Ardakani A., Gross W.J. IEEE Workshop on Signal Processing Systems (SiPS), IEEE, 2021, рр. 52–57.
6. Mittal S. Journal of Systems Architecture, 2020, vol. 104, рр. 101.
7. Chen Z., Li G., Pattabiraman K. Annual IEEE/IFIP Intern. Conf. on Dependable Systems and Networks (DSN), IEEE, 2021, vol. 51, рр. 1–13.
8. Chen Y. H., Emer J., Sze V. ACM SIGARCH computer architecture news, 2016, no. 3(44), pp. 367–379.
9. Libano F., Wilson B., Anderson J., Wirthlin M. J., Cazzaniga C., Frost C., Rech P. IEEE Transact. on Nuclear Science, 2018, no. 1(66), pp. 216–222.
10. Mahdiani H. R., Fakhraie S. M., Lucas C. IEEE Transact. on Neural Networks and Learning Systems, 2012, no. 8(23), pp. 1215–1228.
11. Schorn C., Guntoro A., Ascheid G. Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2018, pp. 979–984.
12. Mokretsov N.S., Tatarnikova T.M. Proc. of Saint Petersburg Electrotechnical University, 2023, no. 7(16), pp. 68–75. (in Russ.)
13. Sovetov B.Y., Tatarnikova T.M., Cehanovsky V.V. Proc. of 22nd Intern. Conf. on Soft Computing and Measurements, SCM 2019, 2019, рр. 121–124.
14. Wang H., Feng R., Han Z.F., Leung C.S. IEEE Transact. on Neural Networks and Learning Systems, 2017, no. 8(29), pp. 3870–3878.
15. Bertoa T.G., Gambardella G., Fraser N. J., Blott M., McAllister J. IEEE Design & Test., 2022, https://doi.org/10.1109/MDAT.2022.3174181.
16. Rabe M., Milz S., Mader P. Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2021, рр. 129–141.
Review
For citations:
Mokretsov N.S., Arkhiptsev E.D. Methods for Optimizing Neural Network Models. Journal of Instrument Engineering. 2024;67(4):330-337. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-4-330-337