Modeling the reinforcement corrosion process in reinforced concrete structure at the object of transport infrastructure
https://doi.org/10.17586/0021-3454-2023-66-6-483-488
Abstract
To predict the safe state of reinforced concrete structures at transport infrastructure facilities, information on directions of crack opening in such structures is of principle importance. The cracks appearance is due to formation and increase in the amount of hydrated iron oxide (iron hydroxide) on the reinforcing bars, that is, caused by corrosion processes. Particularly dangerous are cases when reinforced concrete structures are manufactured in violation of the requirements. The paper considers a case of using steel reinforcement pins of different diameters. The presented results of calculations obtained using mathematical modeling of the nonlinear behavior of corrosion processes and the resulting deformation and structural destruction of concrete show the model forms and direction of crack opening.
Keywords
About the Authors
A. G. KorobeynikovRussian Federation
Anatoly G. Korobeynikov — Dr. Sci., Professor; ITMO University, Faculty of Information Security and Computer Technologies; Professor; Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the RAS, St. Petersburg Branch; Deputy Director for Science.
St. Petersburg
V. L. Tkalich
Russian Federation
Vera L. Tkalich — Dr. Sci., Professor; ITMO University, Faculty of Information Security and Computer Technologies; Associate Professor.
St. Petersburg
О. I. Pirozhnikova
Russian Federation
Olga I. Pirozhnikova — PhD, Associate Professor; ITMO University, Faculty of Information Security and Computer Technologies; Associate Professor.
St. Petersburg
References
1. Vasil'yev A.I. Beton i zhelezobeton, 2000, no. 2, pp. 20–23. (in Russ.)
2. Likhachev V.A., Glushkov E.D. Korroziya i zashchita stroitel'nykh konstruktsiy (Corrosion and Protection of Building Structures), Kirov, 2012, 96 р. (in Russ.)
3. Rossina N.G., Popov N.A., Zhilyakova M.A., Korelin A.V. Korroziya i zashchita metallov. V 2 chastyakh Chast' 1. Metody issledovaniy korrozionnykh protsessov (Corrosion and Protection of Metals. In 2 parts Part 1. Methods for Studying Corrosion Processes), Yekaterinburg, 2019, 108 р., https://elar.urfu.ru/bitstream/10995/68495/1/978-5-7996-2578-8_2019.pdf. (in Russ.)
4. Polak A.F. Modelirovaniye korrozii zhelezobetona i prognozirovaniye yego dolgovechnosti. Itogi nauki i tekhniki Korroziya i zashita ot korrozii. Tom XI (Modeling Corrosion of Reinforced Concrete and Predicting Its Durability. In: Results of Science and Technology Corrosion and Protection Against Corrosion. Volume XI) Moscow, 1986, рр. 136–180. (in Russ.)
5. Polak A.F. Fiziko-khimicheskiye osnovy korrozii zhelezobetona (Physical and Chemical Bases of Reinforced Concrete Corrosion), Ufa, 1982, 76 р. (in Russ.)
6. Benin A.V., Nevzorov N.I. Structural mechanics of engineering structures and facilities, 2007, no. 3, pp. 48–52. (in Russ.)
7. Tournassat C., Steefel C.I., & Gimmi T. Water Resources Research, 2020, vol. 56, art. 2019WR026832, https://doi.org/10.1029/2019WR026832.
8. Demirchyan K.S., Neiman L.R., Korovkin N.V., Chechurin V.L. Teoreticheskiye osnovy elektrotekhniki. Tom 1 (Theoretical Foundations of Electrical Engineering. Volume 1), St. Petersburg, 2003, 463 р. https://portal.tpu.ru/SHARED/k/KOLGANOVAJULIA/academics/Tab7/Tab2/%D0%A2%D0%9E%D0%AD%20%D1%87.1.pdf. (in Russ.)
9. Grishentsev A.Yu., Korobeinikov A.G. Journal of Radio Electronics, 2016, no. 5, pp. 9. (in Russ.)
10. Korobeinikov A.G., Grishentsev A.Yu., Svyatkina M.N. Cybernetics and programming, 2013, no. 3, pp. 9–20. (in Russ.)
11. Korobeynikov A.G., Grishentsev A.Y., Velichko E.N., Aleksanin S.A., Fedosovskii M.E., Bondarenko I.B., Korikov C.C. Optical Memory & Neural Networks (Information Optics), 2016, no. 3(25), pp. 184–191.
Review
For citations:
Korobeynikov A.G., Tkalich V.L., Pirozhnikova О.I. Modeling the reinforcement corrosion process in reinforced concrete structure at the object of transport infrastructure. Journal of Instrument Engineering. 2023;66(6):483-488. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-6-483-488