Optical Fiber as A Basis for Creating a Liquid Boiling Alarm
https://doi.org/10.17586/0021-3454-2024-67-7-593-598
Abstract
The possibility of using single-mode optical fiber applied in telecommunications to create a liquid boiling alarm is investigated. It is established that when the temperature of liquid boiling is reached, the coefficient of optical radiation reflection by the interface of two media — the fiber core and the liquid — changes. As a result, the power of optical signal reflected back into the fiber from the interface of such media increases. An increase in the power of the reflected signal to a certain value indicates that the boiling point of the liquid has been reached. It is shown that the difference between the attenuation value on the reflectometer scale at the maximum point for the peak of the reflectogram of a single-mode telecommunication optical fiber and the attenuation value on the reflectometer scale before the peak of this reflectogram can be used as an information parameter for determining the moment of reaching the boiling point.
About the Authors
S. V. ZhdanovichBelarus
Sergey V. Zhdanovich — PhD, Associate Professor; Industry Laboratory of Perspective Information and Communication Technologies; Head of the Laboratory
Minsk
A. O. Zenevich
Belarus
Andrey O. Zenevich — Dr. Sci., Professor; Rector
Minsk
T. G. Kovalenko
Belarus
Tatiana G. Kovalenko — Industry Laboratory of Perspective Information and Communication Technologies; Researcher
Minsk
T. M. Mansurov
Azerbaijan
Tofig M. Mansurov — Dr. Sci., Professor; Azerbaijan Technical University, Department of Radio Engineering and Communication
Baku
E. V. Novikov
Belarus
Evgeny V. Novikov — PhD, Associate Professor; Institute of Modern Communication Technologies; Director of the Institute
Minsk
References
1. https://smarthof.ru/info/datchiki-temperatury. (in Russ.)
2. https://belorg.by/brendyi/endress-hauser/izmerenie-temperaturyi/promyishlennyie-datchiki-temperaturyi/. (in Russ.)
3. USSR Copyright Certificate No. 951086, k. G01K 11/06, 1980.
4. USSR Copyright Certificate No. 1583812, k. G01N 25/08, 1988.
5. Russian Federation Patent No. 2034994, 30.11.1994.
6. Gulakov I.R., Zenevich A.O. Volokonno-opticheskiye datchiki fizicheskikh velichin (Fiber-Optic Sensors of Physical Quantities), Minsk, 2022, 367 р. (in Russ.)
7. https://incabspecialty.ru/techhub/kabeli-datchiki-dlya-raspredelennogo-monitoringa/. (in Russ.)
8. Listvin A.V. Reflektometriya opticheskikh volokon (Reflectometry of Optical Fibers), Moscow, 2005, 208 р. (in Russ.)
9. Rusanov Yu.A. Monitoring. Nauka i bezopasnost' (Monitoring. Science and safety), 2011, no. 1, pp. 62–73. (in Russ.)
10. Zenevich A.O., Kovalenko Т.G., Novikov E.V., Zhdanovich S.V. Doklady BGUIR, 2023, no. 6(21), pp.14–20, http://dx.doi.org/10.35596/1729-7648-2023-21-6-14-20. (in Russ.)
11. Schroder G., Treiber H. Technische Optik. Grundlagen und Anwendungen, Vogel, 2002, 288 s.
12. Listvin A.V., Listvin V.N., Shvyrkov D.V. Opticheskiye volokna dlya liniy svyazi (Optical Fibers for Communication Lines), Moscow, 2003, 288 р. (in Russ.)
13. Recommendation ITU-T G.657 (11/2016) Characteristics of a bending-loss insensitive single-mode optical fibre and cable, Geneva, 2017, 24 p.
14. Denisov I.V., Lisovsky N.V. Applied Photonics, 2023, no. 1(10), pp. 131–148. (in Russ.)
15. Zenevich A.O., Mansurov T.M., Kovalenko T.G., Novikov E.V., Zhdanovich S.V., Matkovskaia T.A. Journal of Instrument Engineering, 2022, no. 12(65), pp. 895–901, DOI 10.17586/0021-3454-2022-65-12-895-901. (in Russ.)
Review
For citations:
Zhdanovich S.V., Zenevich A.O., Kovalenko T.G., Mansurov T.M., Novikov E.V. Optical Fiber as A Basis for Creating a Liquid Boiling Alarm. Journal of Instrument Engineering. 2024;67(7):593-598. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-7-593-598