Neural network model of errors of an autonomous aircraft strapdown inertial navigation system
https://doi.org/10.17586/0021-3454-2023-66-6-441-448
Abstract
A neural network model is proposed for a strapdown inertial navigation system (SINS) entering an integrated inertial-satellite navigation system of an autonomous aircraft, operating in the conditions of loss of satellite radio navigation field signals. The model takes into account the main factors that define the errors in navigation parameters estimates by means of the SINS, including the dynamics of the aircraft functioning process. As essential parameters characterizing the autonomous aircraft flight mode dynamics, it is proposed to use linear and angular accelerations, as well as their variations in the discrete interval of the navigation system operation. A functional diagram of the inertial-satellite navigation system with the neural network model of SINS errors is presented, and recommendations are given for its specific implementation.
About the Authors
S. AlsayedRussian Federation
Saeed Alsayed — Adjunct; A.F. Mozhaisky Military Space Academy, Department of Autonomous Control Systems.
St. Petersburg
V. V. Efimov
Russian Federation
Vladimir V. Efimov — Dr. Sci., Professor; A. F. Mozhaisky Military Space Academy, Department of Autonomous Control Systems.
St. Petersburg
I. V. Fominov
Russian Federation
Ivan V. Fominov — Dr. Sci., Professor; A.F. Mozhaisky Military Space Academy, Department of Autonomous Control Systems; Head of the Department.
St. Petersburg
References
1. Krasilshchikov M.N., Sebryakov G.G. ed. Sovremennyye informatsionnyye tekhnologii v zadachakh navigatsii i navedeniya avtonomnykh manevrennykh letatel'nykh apparatov (Modern Information Technologies in the Tasks of Navigation and Guidance of Autonomous Maneuverable Aircraft), Moscow, 2009, 556 р. (in Russ.)
2. Matveev V.V., Raspopov V.Ya. Osnovy postroyeniya besplatformennykh inertsial'nykh navigatsionnykh system (Basics of Building Strapdown Inertial Navigation Systems), St. Petersburg, 2009, 280 р.(in Russ.)
3. Al Bitar N., Gavrilov A.I. Gyroscopy and Navigation, 2019, no. 4(10), pp. 231–244.
4. Al Bitar N., Gavrilov A.I. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2020, no. 2, pp. 4–25, DOI: 10.18698/0236-3933-2020-2-4-26. (in Russ.)
5. Doronin D., Donchenko A., Shevtsov S. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2012, no. 4(5), pp. 1363–1367. (in Russ.)
6. Kuznetsov A.G., Portnov B.I., Izmailov E.A. Proceedings of the Moscow Institute of Electromechanics and Automatics, 2014, no. 8, pp. 24–32. (in Russ.)
7. Golovan A.A., Mishin V.Y., Chirkin M.V., Molchanov A.V. Journal of Computer and Systems Sciences International, 2021, no. 4, pp. 627–638.
8. Efimov V.V., Pastalaka V.V. Journal of Instrument Engineering, 2005, no. 1, pp. 12–19. (in Russ.)
9. Alsaed S., Efimov V.V. Proceedings of the Mozhaisky Military Space Academy, 2021, no. 679, pp. 45–51. (in Russ.)
10. Al Bitar N., Gavrilov A.I. Gyroscopy and Navigation, 2019, no. 3, pp. 31–52, DOI: 10.17285/0869-7035.0001. (in Russ.)
11. Gladkov L.A., Kureychik V.V., Kureychik V.M. Geneticheskiye algoritmy (Genetic Algorithms), Moscow, 2006, 320 р. (in Russ.)
12. Sobolevsky V.A. Informatization and communication, 2019, no. 3, pp. 100–107. (in Russ.)
13. Moiseev V.S. Prikladnaya teoriya upravleniya bespilotnymi letatel'nymi apparatami (Applied Control Theory for Unmanned Aerial Vehicles), Kazan, 2013, 768 р. (in Russ.)
Review
For citations:
Alsayed S., Efimov V.V., Fominov I.V. Neural network model of errors of an autonomous aircraft strapdown inertial navigation system. Journal of Instrument Engineering. 2023;66(6):441-448. (In Russ.) https://doi.org/10.17586/0021-3454-2023-66-6-441-448