Preview

Journal of Instrument Engineering

Advanced search

Compact installation for measuring the sensitivity of pyroelectric receivers

https://doi.org/10.17586/0021-3454-2024-67-6-525-532

Abstract

Studied methods for measuring the threshold sensitivity of pyroelectric receivers are make it possible to minimize hardware measurement errors. The possibility of measuring the threshold sensitivity of pyroelectric receivers using a compact measurement circuit with a single optical element - a limiting diaphragm - is experimentally confirmed. The measurement scheme is based on the use of a “camera obscura” type projection system. The proposed measurement scheme allows to minimize measurement errors due to the absence of optical elements that distort the energy and spectral characteristics of radiation, as well as the absence of signal distortion when radiation propagates in air due to the compactness of the measuring circuit.

About the Authors

A. F. Aushev
JSC Research Institute of Optical-Electronic Instrumentation
Russian Federation

Anatoly F. Aushev — Senior Researcher

 Sosnovy Bor, Leningrad Region



L. A. Glushchenko
JSC Research Institute of Optical-Electronic Instrumentation
Russian Federation

Larisa A. Glushchenko — PhD, Leading Researcher

 Sosnovy Bor, Leningrad Region



References

1. Borisova M. E. Aktivnyye dielektriki (Active Dielectrics), St. Petersburg, 2012, 82 р. (in Russ.)

2. V’yukhin V. N., Ivanov S. D. Optoelectronics, Instrumentation and Data Processing, 2018, no. 5(54), pp. 502–505.

3. https://cyberleninka.ru/article/n/byatrodeystvuyuschiy-neohlazhdaemyy-teplovoy-priemnik-ik-izlucheniya/viewer/. (in Russ.)

4. Ivanov S. D., Kostsov E. G. Advances in Applied Physics, 2017, no. 2(5), pp. 136–154. (in Russ.)

5. Gibin I. S., Kolesnikov G. V. Advances in Applied Physics, 2014, no. 3(2), pp. 293–302. (in Russ.)

6. Gulakov I. R., Zenevich A. O., Novikov E. V., Kochergina O. V., Lagutik A. A. Advances in Applied Physics, 2021, no. 3(9), pp. 216-223, DOI: 10.51368/2307-4469-2021-9-3-216-223. (in Russ.)

7. Andosov A. I., Batsheva A. A., Polesskiy A. V., Tresak V. K., Khamidullin K. A. Advances in Applied Physics, 2018, no. 2(6), pp. 149–156. (in Russ.)

8. Chukita V. I., Senokosov E. A., Feshchenko V. S. Rossiiskii Tekhnologicheskii Zhurnal, 2019, no. 3(7), pp. 69–76, DOI: 10/32362/2500-316X-2019-7-3-69-76. (in Russ.)

9. Batsheva A. A., Kuznetsov V. Y., Polesskiy A. V., Tresak V. K. Advances in Applied Physics, 2018, no. 1(6), pp. 68–74. (in Russ.)

10. Kuvaldin E. V., Shul’ga A. A. Journal of Optical Technology, 2017, no. 2(84), pp. 108–112.

11. Patent RU 2689457, Stend izmereniya parametrov teplovizionnykh kanalov (Stand for Measuring Parameters of Thermal Imaging Channels), R. R. Agafonova, M. N. Batavin, D. V. Kulikov, A. V. Mingalev, S. N. Shusharin, Published 2019, Bulletin 16. (in Russ.)

12. Patent RU 2507495, Sposob kontrolya parametrov optiko-elektronnykh sistem v rabochem diapazone temperature (A Method for Monitoring the Parameters of Optical-Electronic Systems in the Operating Temperature Range), V. M. Demidov, A. L. Logutko, E. N. Fedonov, Published 2014, Bulletin 5. (in Russ.)

13. Gulakov I. R., Zenevich A. O., Kochergina O. V Advances in Applied Physics, 2021, no. 2(9), pp. 164–171, DOI: 10.51368/2307-4469-2021-9-164-171. (in Russ.)

14. Polesskiy A. V., Solomonova N. A. Advances in Applied Physics, 2020, no. 2(8), pp. 148–154. (in Russ.)


Review

For citations:


Aushev A.F., Glushchenko L.A. Compact installation for measuring the sensitivity of pyroelectric receivers. Journal of Instrument Engineering. 2024;67(6):525-532. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-6-525-532

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3454 (Print)
ISSN 2500-0381 (Online)