Compact installation for measuring the sensitivity of pyroelectric receivers
https://doi.org/10.17586/0021-3454-2024-67-6-525-532
Abstract
Studied methods for measuring the threshold sensitivity of pyroelectric receivers are make it possible to minimize hardware measurement errors. The possibility of measuring the threshold sensitivity of pyroelectric receivers using a compact measurement circuit with a single optical element - a limiting diaphragm - is experimentally confirmed. The measurement scheme is based on the use of a “camera obscura” type projection system. The proposed measurement scheme allows to minimize measurement errors due to the absence of optical elements that distort the energy and spectral characteristics of radiation, as well as the absence of signal distortion when radiation propagates in air due to the compactness of the measuring circuit.
About the Authors
A. F. AushevRussian Federation
Anatoly F. Aushev — Senior Researcher
Sosnovy Bor, Leningrad Region
L. A. Glushchenko
Russian Federation
Larisa A. Glushchenko — PhD, Leading Researcher
Sosnovy Bor, Leningrad Region
References
1. Borisova M. E. Aktivnyye dielektriki (Active Dielectrics), St. Petersburg, 2012, 82 р. (in Russ.)
2. V’yukhin V. N., Ivanov S. D. Optoelectronics, Instrumentation and Data Processing, 2018, no. 5(54), pp. 502–505.
3. https://cyberleninka.ru/article/n/byatrodeystvuyuschiy-neohlazhdaemyy-teplovoy-priemnik-ik-izlucheniya/viewer/. (in Russ.)
4. Ivanov S. D., Kostsov E. G. Advances in Applied Physics, 2017, no. 2(5), pp. 136–154. (in Russ.)
5. Gibin I. S., Kolesnikov G. V. Advances in Applied Physics, 2014, no. 3(2), pp. 293–302. (in Russ.)
6. Gulakov I. R., Zenevich A. O., Novikov E. V., Kochergina O. V., Lagutik A. A. Advances in Applied Physics, 2021, no. 3(9), pp. 216-223, DOI: 10.51368/2307-4469-2021-9-3-216-223. (in Russ.)
7. Andosov A. I., Batsheva A. A., Polesskiy A. V., Tresak V. K., Khamidullin K. A. Advances in Applied Physics, 2018, no. 2(6), pp. 149–156. (in Russ.)
8. Chukita V. I., Senokosov E. A., Feshchenko V. S. Rossiiskii Tekhnologicheskii Zhurnal, 2019, no. 3(7), pp. 69–76, DOI: 10/32362/2500-316X-2019-7-3-69-76. (in Russ.)
9. Batsheva A. A., Kuznetsov V. Y., Polesskiy A. V., Tresak V. K. Advances in Applied Physics, 2018, no. 1(6), pp. 68–74. (in Russ.)
10. Kuvaldin E. V., Shul’ga A. A. Journal of Optical Technology, 2017, no. 2(84), pp. 108–112.
11. Patent RU 2689457, Stend izmereniya parametrov teplovizionnykh kanalov (Stand for Measuring Parameters of Thermal Imaging Channels), R. R. Agafonova, M. N. Batavin, D. V. Kulikov, A. V. Mingalev, S. N. Shusharin, Published 2019, Bulletin 16. (in Russ.)
12. Patent RU 2507495, Sposob kontrolya parametrov optiko-elektronnykh sistem v rabochem diapazone temperature (A Method for Monitoring the Parameters of Optical-Electronic Systems in the Operating Temperature Range), V. M. Demidov, A. L. Logutko, E. N. Fedonov, Published 2014, Bulletin 5. (in Russ.)
13. Gulakov I. R., Zenevich A. O., Kochergina O. V Advances in Applied Physics, 2021, no. 2(9), pp. 164–171, DOI: 10.51368/2307-4469-2021-9-164-171. (in Russ.)
14. Polesskiy A. V., Solomonova N. A. Advances in Applied Physics, 2020, no. 2(8), pp. 148–154. (in Russ.)
Review
For citations:
Aushev A.F., Glushchenko L.A. Compact installation for measuring the sensitivity of pyroelectric receivers. Journal of Instrument Engineering. 2024;67(6):525-532. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-6-525-532