Calculation of a curvolinear photosensitive surface of the receiver, matched with a normal lens
https://doi.org/10.17586/0021-3454-2024-67-6-511-518
Abstract
The problems of studying and calculating the parameters of a curved photosensitive surface of the receiver, matched with a common normal lens, are solved. Lenses with a given image field of medium size are considered normal. Lenses with different shapes of the image surface are analyzed. Using the least squares method, an equation for the approximating function of the curve corresponding to the shape of the image surface of the selected lens is obtained. Diagrams of the deformation strength of the object are constructed to assess the strength characteristics of the photosensitive surface of the curvilinear receiver. The curved photosensitive surface of the receiver reduces the influence of field curvature aberration in the selected lens, diminishes the size of scattering spots at the edge of the field by half, and therefore ensures the best quality image. Results of numerical modeling may be applied in the design of technology for manufacturing a curved photosensitive surface, as well as in agreeing on the permissible values of deviations that appear during the development process. The considered sequence for calculating the receiver curved photosensitive surface parameters can be used in the design of optical systems and receiving modules to simplify the creation of an image on the photosensitive surface of the receiver and reduce the influence of field curvature without the implementation of lens compensators.
About the Authors
A. M. BezuglyiRussian Federation
St. Petersburg
A. V. Bakholdin
Russian Federation
St. Petersburg
T. V. Tochilina
Russian Federation
St. Petersburg
References
1. Chambion B., Gaschet C., Behaghel T., Vandeneynde A., Caplet S., Gétin S., Henry D., Hugot E., Jahn W., Lombardo S., Ferrari M. Society of Photo-Optical Instrumentation Engineers (SPIE), Conference Series, 2018, vol. 10539, рp. 1053913.
2. Guenter B., Joshi N., Stoakley R., Keefe A., Geary K., Freeman R., Hundley J., Patterson P., Hammon D., Herrera G., Sherman E., Nowak A., Schubert R., Brewer P., Yang L., Mott R., McKnight G. Optics Express, 2017, no. 12(25), pp. 13010–13023, DOI: 10.1364/OE.25.013010.
3. Iwert O., Delabre B. High Energy, Optical, and Infrared Detectors for Astronomy IV, 2010, Proc. SPIE. 7742, vol. 6, рр. 646–654.
4. Swain P. K., Channin D. J., Taylor G. C., Lipp S. A., and Mark D. S. Proc. SPIE, 2004, vol. 5301, рр. 109–129.
5. Dumas D., Fendler M., Baier N., Primot J., le Coarer E. Applied Optics, 2012, no. 22(51), pp. 5419–5424.
6. Itonaga K., Arimura T., Matsumoto K., Kondo G., Terahata K., Makimoto S., Hirayama T. Symposium on VLSI Technology (VLSI-Technology). Digest of Technical Papers, 2014, DOI:10.1109/vlsit.2014.6894341.
7. Hugot E., Lombardo S., Behaghel Th., Chambion B., Jahn W., Gaschet Ch., Hugo S., Gach J.L., Ferrari M., Henry D. International Conference on Space (Optics—ICSO 2018), Chania, Greece, October 9–12, 2018, Proc. of SPIE, vol. 11180, рр. 111802Y-2
8. Gaschet Ch., Chambion B., Gétin S., Moulin G. Novel Optical Systems Design and Optimization XX, Proc. of SPIE, 2017, vol. 10376.
9. Olmedo M., Lloyd J., Mamajek E. E., Chávez M. The Astrophysical Journal, 2015, no. 2(813).
10. Slyusarev G. G. Raschet opticheskikh sistem (Calculation of Optical Systems), Leningrad, 1975, 640 р. (in Russ.)
11. Rusinov M. M. Technical optics (Tekhnicheskaya optika), Leningrad, 1979, 488 р. (in Russ.)
12. Sutton T. J. of the Photographic society, 1860, no. 95, 185 p.
13. Malysheva T. A. Chislennyye metody i komp’yuternoye modelirovaniye. Laboratornyy praktikum po approksimatsii funktsiy (Numerical Methods and Computer Modeling. Laboratory Workshop on Approximation of Functions), St. Petersburg, 2016, 33 р. (in Russ.)
14. Churilovsky V. N. Teoriya opticheskikh priborov (Theory of Optical Instruments), Leningrad, 1966, 565 р. (in Russ.)
15. Adamova A. A., Tsivinskaya T. A. Elektronika: nauka, tekhnologiya, biznes, 2020, no. 9, pp. 104–109. (in Russ.)
16. Zhao J.-H., Tellkamp J., Gupta V., and Edwards D. R. IEEE Transactions on Electronics Packaging Manufacturing, 2009, no. 4(32), pp. 248–255.
Review
For citations:
Bezuglyi A.M., Bakholdin A.V., Tochilina T.V. Calculation of a curvolinear photosensitive surface of the receiver, matched with a normal lens. Journal of Instrument Engineering. 2024;67(6):511-518. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-6-511-518