Formation of sets of five-fold gold-type sequences for digital information transmission systems
https://doi.org/10.17586/0021-3454-2024-67-2-107-115
Abstract
Sets of vectors of decimation indices IS = (id1, id2, …, idn) for the formation of sets of five-fold Gold-type sequences in finite fields GF(5S) (S = 3, 4, 5, 6) based on М- sequences with verification polynomials hМП(x) for periods N = 5S – 1 < 20 000, are presented. The sets include both the well–known decimation indices obtained by Trachtenberg, Helleset, Kumar and satisfying the condition LCD(idi, 5S – 1) = 1 (LCD is the largest common divisor), and the newly found indices that allow the formation of sets of five-fold Gold-type sequences with volumes VS = N + 1 and low levels of periodic auto- and the cross-correlation functions. For the considered values of S, boundary estimates of the maximum value of the correlation function modulus |Rmax| are given.
About the Authors
V. G. StarodubtsevRussian Federation
Victor G. Starodubtsev – PhD, Associate Professor; Department of Technologies and Automation Tools for Processing and Analysis of Space Equipment Information; Lecturer
St. Petersburg
V. V. Tkachenko
Russian Federation
Vladimir V. Tkachenko – PhD, Associate Professor; Department of Technologies and Automation Tools for Processing and Analysis of Space Equipment Information; Senior Lecturer
St. Petersburg
References
1. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
2. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
3. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge University Press, 2005, 438 p.
4. Yang Y., Tang X. IEEE Trans. Inf. Theory, 2018, no. 1(64), pp. 384.
5. Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003, 608 p. (in Russ.)
6. Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.
7. Trachtenberg H.M. On the cross-correlation functions of maximal recurring sequences, Candidate’s thesis, Univ. Southern California, Los Angeles, CA, 1970.
8. Dobbertin H., Helleseth T., Kumar P.V., Martinsen H. IEEE Trans. Inf. Theory, 2001, no. 4(47), pp. 1473.
9. Starodubtsev V.G., Myshko V.V. Journal of Instrument Engineering, 2023, no. 7(66), pp. 568–575. (in Russ.)
10. Muller E.N. IEEE Trans. Inf. Theory, 1999, no. 1(45), pp. 289.
11. Hu Z., Li X., Mills D., Muller E., Sun W., Williems W., Yang Y., Zhang Z. Applicable Algebra Eng. Commun. Comput., 2001, vol. 12, p. 255.
12. Seo E.Y., Kim Y.S., No J.S., Shin D.J. IEEE Trans. Inf. Theory, 2008, no. 7(54), pp. 3140.
13. Seo E.Y., Kim Y.S., No J.S., Shin D.J. IEICE Trans. Fund. Electron., Commun. Comput. Sci., 2007, no. 11(E90-A), pp. 2568.
14. Jang J.W., Kim Y.S., No J.S., Helleseth T. IEEE Trans. Inf. Theory, 2004, no. 8(50), pp. 1839.
Review
For citations:
Starodubtsev V.G., Tkachenko V.V. Formation of sets of five-fold gold-type sequences for digital information transmission systems. Journal of Instrument Engineering. 2024;67(2):107-115. (In Russ.) https://doi.org/10.17586/0021-3454-2024-67-2-107-115